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EXECUTIVE SUMMARY

EDB Postgres® Al (EDB PG Al), including its Al Factory and combined with native vector solutions, provides a
unified, enterprise-grade platform for vector databases and Al workloads. Key differentiators include:

« Unified data platform: Combines transactional, analytical, and vector operations on a single, ACID-
compliant Postgres engine, eliminating separate vector stores

¢ Performance and efficiency:

o 4.22x faster query performance via optimized indexing and intelligent
query orchestration’

« 18x greater storage efficiency through advanced compression and optimization?

e 67%reductionin development complexity via automated Al pipelines and
low-code GenAl Builder?

¢ Accelerated Al adoption: Compresses Al project timelines from months to weeks, enabling faster
time to market

« Enterprise security and sovereignty: End-to-end protection with encryption, role-based access
control (RBAC), identity management, network isolation, and full control over
dataand models

¢ Seamlessintegration: Enables hybrid Al and analytics workflows by unifying vector and relational
workloads within one platform

* Flexible deployment: Supports multi-cloud, hybrid, and on-premises environments without
sacrificing performance or compliance

e Operational simplicity: Through EDB PG Al Factory, automates embedding management, pipeline
orchestration,and model workflows, reducing operational overhead while boosting agility

¢ Provenbenchmark advantage: Superior throughput, low-latency similarity search, and efficient
storage footprint to reduce costs compared to specialized vector databases

Impact: EDB PG Alempowers organizations to build scalable, secure, and sovereign Al applications,
accelerating innovation and operational efficiency across enterprise Alinitiatives.
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1. Introduction

The staggering growth of generative Al (GenAl)—driven applications, from semantic search and recommendations
tointelligent assistants, has made vector databases a critical component of modern data infrastructure. While
pgvector, the Postgres extension for vector similarity search, provides a strong open source foundation,
enterprise-grade Al workloads demand far more: scalability, performance, reliability, and compliance.

EDB PG Al redefines what's possible by extending the power of pgvector into a software-optimized GenAl data
platform—one that unifies transactional, analytical, and vector workloads under a single, sovereign Postgres
engine. Through intelligent automation and the deep integration of Al Factory, EDB PG Al enables organizations to
seamlessly operationalize retrieval-augmented generation (RAG), embeddings, and agentic Al solutions without
abandoning trusted Postgres architecture.

Atits core, EDB PG Al enhances pgvector with:
*  4.22x faster query performance through optimized indexing and query orchestration

* 18x greater storage efficiency achieved through object storage integration, advanced
compression, and optimized data handling

¢ 67%reductionin development complexity enabled by automated Al pipelines and low-code
GenAl Builder tools, dramatically simplifying workflows compared to DIY implementations

e Accelerated time to production—from 28 weeks to 9 weeks, enabling rapid Al adoption

This white paper explores how EDB PG Al overcomes the architectural and operational limitations of vanilla
pgvector, delivering an enterprise-ready vector database that adheres to database ACID (atomicity,
consistency, isolation, and durability) principles, data sovereignty, and open standards. The sections
ahead examine the evolution of vector-powered applications, dissect internal mechanics of pgvector, and present
the EDB architectural enhancements that make GenAl production scalable, secure, and efficient—all within
the familiar Postgres ecosystem.

With the growing complexity of Al-driven data ecosystems, understanding the foundation of vector intelligence
is essential. The next section explores how vector embeddings have become the backbone of modern Al
applications and why this shift demands a new class of data architecture.
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2. Foundations of vector intelligence
in modern data systems

Vector embeddings have rapidly emerged as the foundation for modern Al, powering applications such as
semantic search, recommendation engines, and multimodal Al. While pgvector has made it easy for Postgres
users toimplement vector search, organizations quickly encounter limitations when scaling to production-
grade GenAl solutions. Performance bottlenecks emerge from demanding vector indexing and retrieval
operations. Storage costs escalate as high-dimensional vectors consume vast disk space. Developer
complexity increases when we integrate multiple components such as retrieval systems, chunking pipelines,
and embedding models while keeping pace with a rapidly evolving Al ecosystem. And time to production
extends as piecemeal integrations introduce security considerations and operational overhead. To truly
understand these bottlenecks and the need for next-generation data architecture, we must firstlook at the
history and meteoric rise of vector data.

2.1. Therise of vector-powered applications

As per 2025 statistics, ChatGPT processed more than 2 billion queries daily,* many powering RAG applications
that rely on vector similarity search to retrieve relevant context. This explosive growthin Alapplications has
fundamentally changed how enterprises think about data architecture.

Every day, 2.5 quintillion bytes of data are created worldwide. For enterprises, the challenge is acute: The vast
majority of their data—documents, images, audio, and video—is unstructured. Traditional databases can

store this data but cannot understand its meaning. Vector embeddings bridge this gap, enabling machines to
comprehend the underlying meaning, context, and relationships among disparate data by representing them as
numerical coordinates in vector space.

2.2.Understanding vector embeddings

Vector embeddings convert complex, unstructured data—text, images, audio, and more—into numerical
arrays that machines can efficiently process. Each embedding is a dense vector (xeR") representing latent
features learned by models, typically through neural networks —computational systems designed to
recognize patterns and relationships in data. These networks effectively compress the vast, sparse data
space of the original data into a highly structured numerical representation. Geometric relationships in this
vector space encode semantic or structural similarity: The closer two vectors are, the more related their
underlying meanings. This closeness is measured using distance metrics such as cosine distance, which
evaluates the angle between two vectors to assess directional similarity, or Euclidean distance, which
measures the straight-line spatial separation between them.

Forexample,in a text-embedding space, cat and kitten lie closer together than cat and airplane. In essence,
embeddings provide a continuous, algebraic representation of meaning, enabling similarity search, clustering,
andreasoning across data types.



Different embedding models produce vectors of varying dimensionality (n), depending on their designand use
case. These large vector sizes (often hundreds to thousands of dimensions) introduce the high-dimensional
challenges that data architects must solve, as detailed later in this paper. The table below highlights popular
models and explains how their embedding dimensions align with specific Al workloads, from text understanding
and generation to multimodal and real-time applications.

Model Dimensions UseCase Performance
BERT 768 Textunderstanding Baseline
GPT-3 12,288 Textgeneration Highaccuracy
CLP 512 Image-textmatching  Multimodal
Whisper 1,024 Audio transcription Realtime

By mapping diverse data into a shared vector space, machines can find semantically similar content regardless of
exact wording. This capability powers a variety of use cases, including RAG for enhancing large language model (LLM)
responses with contextual data, semantic search for meaning-based information retrieval, recommendation systems
that infer user preferences from behavior and content similarity, and anomaly detection that identifies unusual patterns
across complex datasets.

Vector embeddings power the shift from literal keyword search to contextual semantic search, enabling systems
tointerpret meaning rather than just text. This evolution allows applications to deliver more accurate, intent-aware
results—a foundation for intelligent assistants, recommendation systems, and enterprise Al search.

Forinstance, hereis atable comparing traditional keyword-based search vs. vector-based semantic search when auser
searches for cheap flights to Paris:

Approach Mechanism Example Results

Traditionalsearch ~ Matchesonlyliteralterms ~ »¢ Missesrelated phrasessuchas:
(Keyword matching)  intextor metadata - affordableairfare to France
« budget travel France
« low-costcarriers CDG

Semantic search Usesvectorembeddings € Recognizesrelated concepts andintent
(Vector similarity) tocapture meaningand & Finds semantically similar results
context, notjust words & Delivers more complete, relevantanswers

This shift from literal to conceptual understanding forms the backbone of next-generation Al applications—enabling
more accurate, intelligent, and human-like responses in search, recommendation, and conversational systems.

EDB
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2.3. The database architecture dilemma

How can organizations integrate GenAl tooling and vector capabilities—such as similarity search and
Al-driven recommendations—into their existing data infrastructure to enhance search, analytics, and
insights, without disrupting existing transactional workflows, managing fragmented toolchains, or breaking
systems that already work?

Implementing vector-powered applications requires a critical architectural decision, with fundamental
trade-offsimpacting cost, performance, and time to market:

+ Specialized vector databases prioritize search speed but introduce high operational overhead
and lack core enterprise guarantees.

« Basic vector extensions for traditional databases (such as standard pgvector) ensure data
consistency but often compromise performance and lack the advanced tooling necessary for
large-scale production use.

2.3.1. The dual challenge: Data synchronization and tooling fragmentation

The architectural dilemma extends beyond basic data storage to encompass the entire GenAl application
development lifecycle, introducing two major operational roadblocks:

« Data synchronization burden: Specialized vector databases operate separately from
transactional data stores, forcing teams to build and maintain complex extract, transform, and
load (ETL) pipelines. Every data change—a product update, customer record modification,
or content revision—requires extraction from the source database, transformation into vector
embeddings (often calling external APIs), and loading into the vector store. This creates
synchronization lag, multiplies failure points, and demands dedicated data engineering resources
justto keep systems aligned. As data volumes grow and update frequenciesincrease, these
pipelines become increasingly difficult to maintain and costly to operate.

« Tooling fragmentation problem: Building production GenAl applications requires orchestrating
an entire ecosystem of tools: embedding models for vectorization, chunking strategies for
document processing, retrieval frameworks for context assembly, prompt templates, and LLM
APlintegrations. With specialized vector databases, each component exists as a separate
service requiring its own configuration, monitoring, and maintenance. Development teams spend
disproportionate time onintegration work by connecting APIs, handling failures, managing
versions, and debugging across system boundaries rather than focusing on application logic and
user experience. This tooling sprawl multiplies operational complexity and extends time to market.

2.3.2.Key architectural trade-offs

The burdens of synchronization and fragmentation are part of alarger set of trade-offs impacting the
long-term viability of an architecture. The following table details some of the key trade-offs spanning
consistency, operational load, and GenAlintegration for both approaches:

Feature

Data consistency Eventual/poor: Highrisk of data drift; lacks

Operational load

Indexing/
performance

Specialized Vector Databases

native ACID guarantees

High: Requires separate infrastructure
(provisioning, security, monitoring, failover)
and customETL/sync pipelines

Optimized: High performance for pure
vector search, often using proprietary,

specializedindexes (e.g., highly tuned HNSW)

GenAlintegration Fragmented: Requires buildingand

maintaining external tooling for
chunking, embedding generation,
and retrieval orchestration

Basic DBMS Vector Extensions

Excellent/native: Inherits strong
ACID transactional guarantees from
thehhost DBMS

Moderate: Runs within the existing
operational stack, but requires extensive
custom code for advanced scaling

and GenAlworkflow

Compromised: Performance can suffer
athigh scale duetoreliance ongeneral-
purpose DBMS architecture and lack of
dedicated vector workload isolation

Manual: No integrated tooling; developers
must build custom solutions for ingestion,
embedding, and lifecycle management
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Thereality is that neither approach meets enterprise needs. What's needed is a unified platform that combines
native vector capabilities with enterprise database features and integrated GenAl tooling—eliminating
synchronization complexity, reducing toolchain sprawl, and delivering production-grade performance and reliability.

2.4. Why ACID compliance matters for GenAl

Theloss of native database guarantees is the single greatest risk introduced by fragmented vector architectures.
As Al workloads increasingly rely on vector embeddings for tasks such as RAG, ensuring transactional integrity,

data consistency, and robust security is paramount.

While stand-alone vector databases often compromise reliability for performance, EDB PG Al with pgvector
effectively threads the needle, delivering a unified platform that provides the high-performance vector search
capabilities of specialized systems while retaining the rock-solid, enterprise-grade guarantees of Postgres—

eliminating the need for compromise.

The table below details why each component of the ACID standard is nonnegotiable for GenAl applications:

ACID Property Relevance to GenAl/Vector Applications

Atomicity Ensures vector and source data
updates succeed or failasasingle,
indivisible transaction

Consistency Guaranteesthat vectors always accurately
reflect the current state of the source
datainrealtime

Isolation Prevents concurrentindexing, search
queries, and transactional writes from
interfering with one another

Durability Guarantees that vector dataand metadata

survive system failures andare fully
recoverable viastandard backup/restore

Implication of Failure (Fragmented DBs)

If text fails to vectorize or index, the source
datamight stillbe committed, leading toan
unsearchable data state

Reliance onasynchronous ETL leads todata
drift, causing RAG applications to provide
stale orincorrect contexttothe LLM

High-throughputindexing operations
(ANN building) can severely degrade
the latency and stability of user-facing
transactional applications

Recovery relies onexternal,non-
transactional backups, risking dataloss or
requiring alengthy, complex,and manual
reindex of the entire corpus

By unifying vector storage with the transactional guarantees of Postgres, EDB PG Al provides the required
foundation. ACID compliance is not the only factor, but itis the essential bedrock that supports the performance,
scalability, integration, and operational governance required by the modern enterprise.

2.5.Industry standard capabilities for vector database

Beyond ACID compliance, production-grade vector databases must deliver acomprehensive set of capabilities

that support GenAl workloads at scale. The following is a framework to evaluate whether a vector offering truly

meets enterprise requirements, such as ensuring that vector embeddings can be stored, queried, and managed

efficiently while maintaining security, observability, and integration with Al pipelines.

Category Industry-Standard RFI Requirements
Core vector - Native support for vector data types
functions « Vector similarity search (cosine, inner
product, Euclidean)
- Indexing support (HNSW, IVFFlat,etc.)
« Upsert, delete,and update of vector
Scalability and « Horizontal scaling for
performance storage and compute

« Parallelquery execution

« Support for high-dimensional
embeddings (>1,000 dimensions)

» Real-time orlow-latency retrieval

Table continued on next page.

What It Means

Foundational vector operations needed
for semantic search, recommendations,
andRAG

Ensures the database canhandle millions to
billions of embeddings efficiently
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Table continued from previous page.

Category

Advanced
performance

Integration and
extensibility

Hybrid data
support

Security and
compliance

Deployment
flexibility

Observability and
management

Enterprise
readiness

Industry-Standard RFI Requirements

«  GPUaccelerationfor vector operations
- Support for specialized hardware and
customer accelerators

 Standard APIs (SQL,REST,gRPC)

- Integration with Al/ML frameworks
(LangChain, Llamalndex, Hugging
Face, OpenAl,etc.)

« Pluginor extension support

« Ability to store relationaland
vector datatogether
- Joinvectorand scalar queries natively

» Encryptionatrestandintransit

- RBAC

« Auditlogginganddatalineage

- Compliance with GDPR/PDPA/
industry standards

» Cloud,on-premises,and hybrid
deployment options

« Kubernetesor container
orchestration compatibility

« Backupandreplicationsupport

«  Monitoringdashboards

» Queryperformance metrics
« Backup/restore automation
» Loggingandalerts

 Highavailability and clustering
«  Multi-tenantisolation

- Enterprise support SLAs

« Integration with LDAP/OAuth

What It Means

For ultra-low-latency requirements or
massive-scale real-timeinference, GPU
acceleration can optimize embedding
generationand similarity search
Enables easy embedding generation
and consumption by Al pipelines

and enterprise apps

Essential for unified analytics and hybrid
transactional-analytical processing (HTAP)

Protects dataintegrity and supports
auditability under regulatory frameworks

Allows sovereignty and high availability
acrossenvironments

Ensures operational reliability and proactive
management

Defines production-grade reliability and
enterprise-level governance

Having established why vectors are central to Al and the challenges of scaling traditional architectures, we now

turn to pgvector—the foundational Postgres extension that enables native vector storage and search. This section

examinesits architecture, indexing strategies, and inherent production limitations.
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3. pgvector foundation:
Capabillities and limitations

Now that we have analyzed the critical challenges in data fragmentation and established a comprehensive
framework of enterprise requirements (Sections 2.3-2.5), we can turn our attention to the core technology of
EDB PG Al's unified approach: pgvector. This open source Postgres extension introduces native vector data
types and similarity search capabilities directly within the database, allowing teams to store and query high-
dimensional embeddings (up to 16,000 dimensions) alongside operational data using familiar SQL.

While pgvector eliminates the need for separate vector databases with your existing Postgres environment,

there are production limitations at scale, including performance degradation beyond 10 million vectors, manual
embedding management, lack of vector-specific monitoring, and operational complexity around ingestion and
recovery. Inthis section, we look at architecture and indexing strategies, then explore these production challenges
to establish the context for how EDB PG Al extends pgvector with enterprise-grade optimization, automation, and
unified GenAl orchestration.

3.1.Introduction to pgvector

pgvector is an open source Postgres extension that introduces native vector data types and similarity search
capabilities directly within the database. It provides the essential, high-quality primitives needed to begin building
vector-powered applications within a familiar relational environment.

3.2.Distance metrics

The effectiveness of vector search relies on accurately calculating the similarity between a query vector and the
stored embeddings. pgvector provides native support for three distance metrics, allowing developers to choose
the scoring function most appropriate for their specific Al workload:

Metric/Algorithm  Description Primary Use Case

Cosinedistance  Measuresthe angle betweentwo vectors, Best for text similarity and
capturing directional (semantic) similarity conceptual matching
Inner product Measures the dot product, capturing both Oftenusedinrecommendation systems
directionand magnitude (e.g., user-item pairing)
Euclidean Measures the straight-line spatial separation ~ General geometric distance, effective for
distance (L2 norm) betweentwo vectors visual or spatial data

3.3.Indexing strategies and performance characteristics

Vector searchis not based on exact match but on approximate nearest neighbor (ANN) search, which
requires specialized indexing to deliver fast, scalable results. Efficient vector search in pgvector depends
heavily on the choice of indexing strategy, as each algorithm offers distinct trade-offs in build time, recall
accuracy, and resource consumption.

pgvector supports two primary indexing methods—IVFFlat (inverted file flat) and HNSW (hierarchical
navigable small world) —each optimized for specific workload patterns and data characteristics.

IVFFlatindexing employs k-means clustering to partition vector space into inverted lists, enabling faster
index builds and lower memory overhead. It is best suited for static or batch-oriented datasets where data
updates areinfrequent.

HNSW indexing constructs a multilayer proximity graph that allows efficient ANN search with high recall
and low latency, making it ideal for dynamic, high-dimensional, or real-time workloads.

The essential characteristics and trade-offs between [VFFlat and HNSW indexing are summarized below:



Characteristic

IVFFlat

HNSW

Algorithm Inverted file with flat quantization Hierarchical navigable smallworld
(K-means clustering — inverted lists) (multi-layer graph)

Build time Fast — O(n); quickindex build; Slower — O(nlogn); supports
boundedinsertions dynamicinsert/update

Query speed Moderate Fast

Memory usage Lower Higher (1.5-2x)

Accuracy/recall 95%—-98% recall 98%—-99.5% recall

Data Requires pre-populated data for Handles frequently updated

requirements optimal performance datasets efficiently

Performance Depends onnumber of inverted
Sensitivity lists configured

Consistent performance across
high-dimensional vectors

Ideal Use Case Batch processing, static datasets,

cost-sensitive scenarios

Real-time queries, dynamic and
high-dimensional datasets

To further mitigate the significant memory usage and storage challenges associated with high-dimensional
vectors, recent pgvector versions introduce quantization techniques such as scalar quantization (halfvec) and
binary quantization to reduce vector size and improve query performance.

3.4. Limitations and production challenges

While pgvector provides a powerful foundation for vector storage and similarity search inside Postgres, moving
from proof of concept to enterprise-grade deployment reveals significant gaps. Production environments
demand automation, scalability, resilience, and performance consistency. Without these capabilities,
organizations encounter operational friction, performance bottlenecks, and high maintenance overhead as
workloads scale.

The core challenges fallinto four categories. First, performance degrades exponentially as vector datasets
grow beyond 10 million records, with query latency increasing from milliseconds to seconds, directly impacting
user experience. Second, pgvector lacks automated embedding management, requiring teams to build custom
pipelines for generating, updating, and synchronizing embeddings with source data. Third, without vector-
specific monitoring and observability, operations teams have no visibility into recall rates, index health, or query
performance trends, making it difficult to diagnose issues before they impact production. Finally, operational
complexity increases dramatically as organizations must manually configure ingestion workflows, implement
backup and recovery procedures, and integrate multiple disconnected tools to build complete RAG systems.

The following table outlines these key limitations and their business impact:

Challenge Problem Example Impact Solution

Performance Querylatency

100ms @ 1M User experience Optimizedindexingand query

degradation  increasesexponentially vectors— 2.5s @ degradation,timeout  engine ensureslow query latency

atscale beyond10M vectors 10Mvectors errors evenatlarge scale

Manual Nobuilt-inembedding ~ 50+linesof Python  Adds 3—4 weeks of Automated embedding pipelines

embedding generation coderequired per development time automate embedding generation

management embedding pipeline andingestion

Lack of No vector-specific Unable totrack Blindtoperformance  Built-inmonitoringand alerting

monitoring metrics or alerting recallratesorindex  degradationand provide vector-level observability
efficiency index health and proactive alerts

Operational Manual setup for Multiple Increasedoperational  Unified Al Factory platform

and ingestion,backups,and  disconnectedtools  riskandmaintenance  integrates monitoring,

integration disasterrecovery forRAG systems effort automation,and orchestration

complexity

EDB
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Let'sexplore how EDB PG Al addresses these challenges, offering a unified, production-ready platform that
combines transactional, analytical, and vector workloads, orchestrates GenAl workflows, supports RAG
pipelines, and provides enterprise-grade data management and governance.
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4.EDB PG Al Platform:
Orchestrate, build, and deploy

As we have established, production challenges emerge when scaling pgvector to enterprise workloads, such as
performance degradation beyond 10 million vectors, manual embedding management, lack of vector-specific
monitoring, or operational complexity around ingestion and recovery. EDB PG Al addresses these limitations by
extending pgvector with enterprise-grade capabilities while eliminating the tooling fragmentation that plagues
specialized vector databases.

4.1 From vector store to unified Al platform

EDB PG Al delivers core components working together as a unified Al Factory for GenAl application and agent
development across three phases: Orchestrate (data preparation and embedding generation), Build (creating Al
agents and applications), and Deploy (production rollout with full governance).

Together, these components transform Postgres from a database with vector support into acomplete Al platform.
The following sections explore how each component works and the enterprise value it delivers.

Orchestrate: Data preparation
and vector embeddings

Purpose: Automates the ingestion,
transformation, and embedding of data
from diverse sources while maintaining
full data sovereignty

Key capabilities:

» Dataintegration: Connects natively

to Postgres tables, object stores, or Impact: Enterprises can unify their knowledge

external sources. Dataremains base and business datainasingle, secure

within enterprise control.

¢ Al Pipeline: Handles continuous
syncing, data transformation, and
intelligent embedding with minimal code

¢ Vector Engine: Leverages pgvector
for Postgres-native vector storage
and rapid semantic searchin your
trusted environment, eliminating the
ETL and vulnerabilities that come with
maintaining a separate vector database.

* Model Serving: Supports commercial
Almodels or fully open source models
deployed withinthe organization's
infrastructure.

location, enabling semantic similarity search
and RAG workflows while preserving regulatory
compliance and governance.
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Build: Creating Al agents
and applications

Purpose: Python SDK and point-and-click tools
enable both technical and business teams to rapidly
develop GenAl applications and agents

Key capabilities:

* GenAlBuilder: Create sophisticated
GenAl applications, including RAG-based
workflows, in hours rather than months.

» Agent Studio: Build Alagents that

autonomously query data, automate

workflows, and generate insights—without

requiring coding expertise. Impact: Allteams—from marketing and
analytics to operations—can build custom Al

» Security and observability: Leverage

enterprise-trusted Postgres, robust solutions that integrate relational and vector

data, driving real business outcomes on a
secure Postgres foundation.

security features, Al guardrails, and
centralized monitoring to ensure
compliance and responsible Al use.

Deploy: Production-ready Al
applications

Purpose: Provides flexible deployment options
for Al'solutions, ensuring performance, security,
and sovereignty

Key capabilities:

« Deployment flexibility: Supports
public cloud, private VPCs, on-premises
environments, or fully sovereign Al
factories with no externalinfrastructure

« End-to-end control: Helps
organizations maintain complete control
over data, models, and infrastructure

Impact: Enterprises can accelerate
time to value, maintain full governance,
and achieve a secure, unified Al

+ Rapid productionrollout: Enables infrastructure without compromising

moving from proof-of-concept to compliance or operational control.
production Alin weeks instead of months
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4.2. Tosummarize

The Orchestrate — Build = Deploy workflow in Al Factory provides a complete, vector-enabled Al lifecycle
onasingle Postgres-native platform. By combining pgvector embeddings, Al orchestration, low-code/point-
and-click development, and flexible deployment, Al Factory delivers sovereign, secure, and enterprise-ready
Al solutions that unify business and Al data, accelerate Al adoption, and enable rapid, compliant production of
intelligent applications.

4.3. Al Pipelines and RAG pipeline orchestration

Al Factory leverages Al Pipelines to provide automated, production-ready vector workflows. This unified
approach directly addresses data synchronization burden and tooling fragmentation problems by minimizing
manual development and ensuring enterprise-grade performance and governance. Al Pipelines form the
backbone of vector Al solutions, orchestrating every step from documentingestion to intelligent retrieval,
embedding, and optimization.

4.3.1. Automated vector workflows

« Document processing automation: Supports multiple file formats (PDF, Word, etc.), automatically
extracting text, applying intelligent chunking strategies, and preserving metadata to ensure high-quality
input forembeddings.

« Embedding generation and storage: Seamlessly converts text into vector embeddings using
integrated models and populates Postgres vector columns via optimized insertion strategies, maintaining
high throughput and data integrity.

¢ Vector optimization and indexing: Applies continuous performance tuning, indexing strategies, and
monitoring to ensure low-latency retrieval even as datasets scale, while automatically adapting as new
dataisadded.

Off-prompt context management: Maintains a dedicated knowledge store in TaskMemory, a specialized
vector store, sending only smallreferences to the LLM instead of full content, optimizing performance and
security. This approach delivers three critical advantages:

¢ Cost savings: Processes content once and stores it in TaskMemory, eliminating redundant token usage
for repeated queries. Reduces GPU infrastructure costs by minimizing embedding regeneration and
avoids substantial storage expansion typical of separate vector databases by leveraging integrated
Postgres vector capabilities.
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« Consistency: Handles large documents without context window failures, provides granular control
over which tools send data directly to LLMs versus storing off-prompt, and enables seamless workflow
orchestration across complex multistep processes.

¢ Control: Keeps confidentialinformation, customer records, and intellectual property within customer
environments—critical for regulated industries. Offers tool-by-tool privacy controls and simplified
compliance auditing.

The table below contrasts the high operational friction of a manual, fragmented approach with the streamlined
efficiency provided by Al Pipelines.

Without Al Pipelines With Al Pipelines
Ingestion Manual ETL/customscriptsrequiredtoextract,  Automated pipeline: Document processing
and sync chunk, vectorize,andload; highrisk of datadrift ~ automationensures continuous, real-time sync
with source data via optimized extractionand
loading
Development  Requires orchestrating multiple external Unified workflow: Seamlessly integrates
complexity tools (LangChain, OpenAl API, vector store embedding models andindexesinto the
connector) viacustomglue code Postgres engine; no external tooling or custom
API plumbing required
Optimization = Manualindex tuning (e.g., HNSW parameters) Intelligent optimization: Automatically handles
and tuning requires deep knowledge of vector algorithms;  vector optimization, indexing strategies, and
no continuous monitoring performance monitoring to ensure low-latency
retrieval at scale
Timeto Extended; timeis spent onintegrationplumbing,  Accelerated: Focus s shifted entirely to
production security,and debugging across systems applicationlogic and user experience due to

automated infrastructure

4.3.2.RAG pipeline orchestration

Al Pipelines also automates the complexity of RAG workflows, enabling enterprises to build intelligent
applications on top of unified vector and relational data.

* Retrieval optimization: Configures similarity search parameters and indexing to maximize semantic
search accuracy and performance

« Context management: Integrates retrieved documents with language model prompts, ensuring
context-aware responses for GenAl applications

+ Knowledge base management: Maintains dynamic updates, version control, and content freshness
while providing comprehensive audit trails for compliance and traceability

¢ Standardized APIs: Offers simplified connectivity to LLMs, automating prompt construction, context
injection, and response formatting for end-to-end traceability and consistent Al outputs

4.3.3Impact

By combining Al Pipelines with RAG orchestration, Al Factory enables organizations to:
« Accelerate Al deployment with pre-built, automated workflows.
» Maintain high performance and scalability for vector workloads.
- Ensure security, auditability, and compliance across Al processes.

» Reduce operational complexity while integrating seamlessly with enterprise data.



4.4. GenAl Builder and Agent Studio:
LLow- and no-code development platform

Recognizing the hurdles enterprises face—from workflow complexity and fragmented tools to data sovereignty
requirements and slow time to market—the EDB PG Al team developed the GenAl Builder and Agent Studio.
These low-and no-code tools are designed to accelerate Al application and agent development while addressing
the enterprise needs for control, security, and scalability.

4.4.1.How GenAl Builder and Agent Studio address enterprise needs

¢ No-code workflow design: A visual workflow designer and pre-built templates allow developers,
datascientists, and business users to rapidly prototype Al workflows without deep coding expertise.
Teams caniterate on concepts such as document summarization, knowledge retrieval, or compliance
Q&A, reducing Al project time to market from 28 weeks to 9 weeks.

¢ Multi-model orchestration: GenAl Builder and Agent Studio abstract the complexity of managing
multiple Almodels—whether cloud-hosted, on-premises, or within Al Factory.

Featuresinclude:

¢ Dynamic model routing: Switch models per task or workflow stage. For example,
arequest categorized as a “simple summary” can be routed to a small, fast, and
cost-effective model, while a “‘complex reasoning” or legal compliance request is
automatically routed to a larger, more accurate and expensive model. This optimizes
for both performance (speed) and cost per transaction.

« Prompt and context management: Consistentintegration of relevant data retrieved
from pgvector. This feature ensures that the LLM receives not just raw text but
structured, contextual information retrieved by the RAG pipeline. This consistency
eliminates manual prompt engineering, drastically reducing the risk of generating
inaccurate or hallucinated outputs.

« Evaluation hooks: Capture latency, accuracy, and confidence metrics for
governance. These hooks are crucial for validating the reliability of GenAl output. They
allow teams to automatically run RAG responses against preset ground truth data or
quality checks, ensuring the modelis producing accurate, nontoxic, and contextually
relevant answers before delivery.

« Secure credential handling: Enforce enterprise security policies for model
access. Thisis vital for compliance and security. Instead of hard-coding APl keysin
application logic, Builder manages and rotates credentials centrally. This ensures that
sensitive keys for external LLMs are securely handled and prevents unauthorized or
noncompliant access to Al services.

* Model Context Protocol (MCP) integration: Al Factory acts asan MCP host,
providing instant access to hundreds of pre-built integrations across the enterprise
ecosystem, including GitHub, Slack, Google Drive, and enterprise databases.

This open standard enables agents to connect to external tools and data sources
through automated connection management, eliminating the need for
custom connector development.

This orchestration supports EDB's vision of sovereign Al, allowing organizations to control which models
process their data and under what conditions.

« Native pgvector integration: GenAl Builder integrates directly with pgvector, enabling:
- Automatic vector type conversions and optimized distance functions

- Seamless storage and retrieval of embeddings within Postgres schemas
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« Real-time monitoring for query latency, accuracy, and explainable retrieval

By keeping vector data within the enterprise’s data perimeter, organizations reduce operational complexity
and eliminate the need for external vector stores.

« Multisource data connectivity: EDB PG Al's data abstraction layer allows Al workflows to access and
unify structured, semi-structured, and unstructured data across the enterprise data landscape. This
includes connectivity to existing relational databases, data warehouses, object storage, and streaming
platforms. This flexibility enables enterprises to create comprehensive data-to-insight pipelines, essential
for production-grade Al applications.

« Rapid prototyping and production deployment: GenAl Builder accelerates the journey from
idea to production:

¢ Prototype fast: Low-code design and templates allow rapid iteration.

« Deploy anywhere: Workflows can be deployed on-premises, in hybrid environments,
orinthe cloud.

« Lifecycle automation: Once validated, workflows scale automatically, with
monitoring, version control, and production-grade governance.

4.4.2.Businessimpact

GenAl Builder and Agent Studio empower organizations to build and deploy GenAl and agentic solutions
efficiently and securely. The duo enables faster, compliant Al adoption across business, analytics, and operations
teams, while keeping all vector data, embeddings, and Al models within a controlled and auditable environment.

With the architecture and key components of EDB PG Al established, we now analyze how these innovations
translate into measurable performance gains. The following section presents benchmarking results
demonstrating the platform'’s superiority in speed, scalability, and efficiency.
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5. Performance analysis and benchmarking

EDB PG Al extends the native pgvector capabilities with enterprise-grade optimizations that deliver measurable
improvements in performance, scalability, and storage efficiency. Through a combination of advanced

indexing algorithms, intelligent caching, and automated lifecycle management, the platform ensures consistent
performance even under demanding Al and analytics workloads.

5.1. Query performance characteristics

EDB PG Al delivers substantial performance improvements over basic pgvector implementations through
optimized query execution, intelligent indexing, and automated performance tuning. Benchmark testing
demonstrates EDB PG Al's performance advantages:

« Single query performance shows
4.22x improvementin average
query response time compared
to basic Postgres with pgvector,
maintaining sub-second response
times for millions of vectors.

¢ Concurrent query throughput
maintains linear scalability for

thousands of simultaneous searches.

« Complex query operations,
including filtered vector searches
and hybrid queries, demonstrate
consistent performance.

5.2. Storage efficiency and cost analysis

EDB PG Al platform achieves up to 18x cost efficiency over specialized vector databases by leveraging
intelligent compression, optimized data layouts, and object storage integrations:

Intelligent compression: Optimized compression techniques typically reduce raw vector
storage by 60%-80% without sacrificing query accuracy.

Index size reduction: The platform minimizes index storage through quantization. HNSW indexes
using scalar quantization (halfvec) reduce size by approximately 50%, while binary quantization
canshrink index size by up to 90% for compatible workloads—all while maintaining or improving
query performance.

Cost-effective object storage integration: The platformintelligently separates the compressed
vector index (the “hot” data used for fast search) onto high-speed block storage, while decoupling
the raw vector data (the “cold” data) onto highly available, low-cost object storage (e.g., S3, Azure

Blob, MinlO, local file system).

Reduced operational expenditure: This decoupling eliminates the industry requirement of
mandating expensive solid-state drive (SSD) storage for all vector data, drastically reducing
operational expenditure and maximizing cost efficiency for large-scale deployments.

Predictable scalability: By integrating with elastic object storage, the platform ensures that
storage costs grow linearly with data volume, providing predictable, high-volume scalability
unmatched by single-node or monolithic vector databases.
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5.3. Scalability testing results

Scalability testing confirms the platform’s capacity to support enterprise deployments with datasets of up
to 50 million high-dimensional vectors.

¢ Horizontal scaling across multiple Postgres instances sustains near-linear performance growth
as data volume increases, while automated load balancing optimizes resource distribution across
the cluster.

¢ Index build performance benefits from parallel processing, demonstrating efficient scale-up
withincreases in data volume and cluster size. The platform dynamically selects optimal
parallelization strategies based on available system resources and data characteristics.

« Operational scalingincludes fully automated backup and recovery procedures that adapt
to growing data volumes, monitoring systems providing consistent visibility across distributed
deployments, and maintenance operations designed to minimize productionimpact.

5.4. Reliability and availability metrics

Enterprise-grade deployments require 99.999% availability, supported by automated failover and robust
disaster recovery capabilities.

« High-availability (HA) architecture is designed for zero data loss, leveraging synchronous
replication between primary and standby instances. Failover operations typically complete in
under 30 seconds, ensuring seamless continuity with minimal service interruption.

» Disaster recovery workflows enable point-in-time (PIT) restoration of both vector data and
associated indexes. Automated backup processes incorporate vector-specific safeguards,
including index consistency verification and embedding lifecycle integrity checks. Recovery
validation procedures confirm the ability to fully restore vector databases along with all metadata,
configuration states, and performance parameters.

« Real-time monitoring and Alerting frameworks provide end-to-end operational visibility
for vector workloads. Metrics collected include query performance trends, index health
indicators, and capacity utilization analytics. Automated alerts drive proactive intervention,
mitigating risks such as performance degradation or resource saturation before they affect
production environments.

EDB PG Al's performance optimizations are only as valuable as their ease of adoption. The next section
provides a step-by-step guide to implementing pgvector inside Al Factory, enabling teams to start
building intelligent, vector-powered applications immediately.
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6. Implementation guide

6.1. Getting started with pgvector in Al Factory

Step 1: Launch your Al Factory environment
1. Logintoyour AlFactory account.

2. Fromthe dashboard, select Create New Project — Al Workload.
3. Pick your preferred cluster (e.g., EDB Postgres Advanced Server or EDB Postgres Extended).
4. Enable pgvector during setup by checking Al Extensions = pgvector.

@Tip: You canalso add pgvector later using:

CREATE EXTENSION IF NOT EXISTS vector;

Step 2: Create your first vector table
Define a schema to store text embeddings. For example:

CREATE TABLE documents (
id SERIAL PRIMARY KEY,
content TEXT,
embedding VECTOR(1536)

)

This structure stores raw content alongside its Alembedding vector.

Step 3: Generate and insert embeddings
You can create embeddings using OpenAl, Hugging Face, or NVIDIA NeMo Retriever models integrated with
Al Factory. Example Python snippet:

import psycopg?2
import openail
conn = psycopg?2.connect(“dbname=ai_factory user=postgres
password=secret”)
cur = conn.cursor()
text = "EDB Postgres AI accelerates enterprise AI adoption.”
embedding = openai.Embedding.create(input=text, model="text-embedding-
3-small”)[“data”][0][“embedding”]
cur.execute(“INSERT INTO documents (content, embedding) VALUES (%s,
%s)”, (text, embedding))
conn.commit()

Step 4: Query using vector similarity

Retrieve semantically similar content using cosine similarity:

SELECT id, content

FROM documents

ORDER BY embedding <-> ‘[vector values here]’
LIMIT 3;

This enables powerful use cases such as semantic search, context retrieval, and intelligent recommendations.
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Step 5: Monitor and optimize performance
With Al Factory, you get:

¢ 2x-3x throughputimprovements for dataembedding tasks
* 1.5x-2x faster retrieval performance

« Software-defined optimization via NVIDIA Al microservices (NIM, NeMo Retriever)

Use the performance dashboard in Al Factory to view latency, query times, and resource utilization in real time.

Step 6: Scale and integrate
* Deploy in production: Self-hosted on Kubernetes or fully managed with EDB PG Al Hybrid Manager.
¢ Integrate with LLMs through REST APlIs or LangChain connectors.

« Maintain sovereignty by keeping your data and vectors secure within your infrastructure.

Step 7: Explore next steps
« Trythe hands-onlabsin Al Factory.
« Experiment with hybrid search (Full-text + Vector).

« Explore the NVIDIA NIM + pgvector integration for advanced RAG use cases.

6.2. Tosummarize

By combining pgvector with Al Factory, you get an end-to-end environment for building sovereign, high-
performance, and scalable GenAl applications—right inside Postgres.

Al Factory isn'tjust Postgres with vectors—it's a complete software-optimized path to Al production.

Once deployed, Al applications must operate within a secure, compliant, and governable framework. The next
section outlines how EDB PG Al ensures enterprise-grade data sovereignty, access control, and operational
governance across allenvironments.

21



EDB

POSTGRES /I

7. Enterprise governance, security, and
unified Al architecture in EDB PG Al

EDB PG Al redefines enterprise readiness for vector and Al workloads by merging data sovereignty, compliance,
and security with a unified data and Al platform built directly on Postgres. It eliminates the silos and limitations

of standalone vector databases through an open, software-optimized foundation that combines transactional
integrity, analytical scalability,and vector intelligence —all within a single, governed platform.

7.1.Data sovereignty and governance

EDB PG Al ensures that all data, embeddings, and model interactions remain fully within the enterprise’s sovereign
environment. Vector and relational workloads operate in the same Postgres instance—on-premises, in the cloud,
orin hybrid configurations—providing complete ownership and control.

Comprehensive audit trails capture user queries, embedding operations, and Al inference, ensuring
transparency, compliance, and traceability across the full Allifecycle.

This sovereign design allows enterprises to meet stringent frameworks such as GDPR, HIPAA, PDPA, and RBI/
DPDP (India) while maintaining freedom from proprietary, vendor-controlled infrastructures.

7.2. Open standards and freedom from vendor lock-in

Built entirely on open Postgres standards, EDB PG Al's architecture avoids the pitfalls of closed ecosystems.
Embeddings are queryable via SQL, interoperable with the wider Postgres ecosystem, and portable
across environments —cloud, hybrid, or on-premises.

This flexibility ensures long-term scalability and independence, allowing organizations to migrate or federate
vector workloads without reengineering pipelines or compromising compliance.

7.3. Security and access control

EDB PG Al delivers multi-layered enterprise security spanning data protection, identity management,
and network isolation.

« Data protection: AES-256 encryption atrestand TLS 1.3 in transit safeguard relational and vector data
alike, integrating with enterprise key management systems (KMS) and hardware security modules (HSM)
for secure key management.

« Identity and access: RBAC, fine-grained permissions, and multifactor authentication (MFA) for sensitive
operations ensure that only authorized users can interact with Al pipelines or vector data.

« Deployment security: Secure by default, the platform supports VPC isolation, service mesh—based
interservice encryption, and preconfigured firewall templates for consistent protection across all
environments.

Unlike standalone vector stores that require dual security layers, EDB offers a unified SQL and vector security
model, enabling secure hybrid queries such as:

SELECT id, description
FROM documents
ORDER BY embedding <-> $1
LIMIT 5;
This single governance framework ensures compliance without adding operational complexity.
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7.4. Postgres-native vector integration

Atthe core of EDB PG Al is pgvector,embedded natively within Postgres. This eliminates external vector
databases and APl layers, enabling direct SQL access to embeddings stored alongside relational data.

« Shared storage engine: Embeddings and structured data share a single schema for real-time
hybrid analysis.

« Unified query planner: Postgres optimizes vector and scalar operations together for
consistent performance.

« Transactional consistency: ACID compliance ensures synchronization between vectors and
base data—critical for accuracy and recoverability.

This integrated approach minimizes data movement, simplifies architecture, and ensures end-to-end
consistency across the Al stack.

7.5. Unified platform for all workloads

Unlike purpose-built vector engines that introduce additional silos, EDB PG Al unifies OLTP, OLAP, and Al/ML
workloads within one platform.

Enterprises can process transactions, run analytics, and perform semantic search using the same database—
reducing integration overhead, latency, and total cost of ownership.

This convergence delivers faster insights and simpler governance for real-time, Al-driven business operations.

7.6. Deployment flexibility and observability

EDB PG Al's Kubernetes-native architecture ensures consistent deployment across cloud, on-premises,
hybrid, and edge environments. Its Hybrid Manager centralizes orchestration and monitoring, providing unified
visibility into distributed workloads.

Performance metrics, index health,and embedding lifecycle data are tracked in real time, with automated index
optimization, cleanup, and alerting to maintain peak performance and uptime.

These operationalinsights enable teams to scale securely while maintaining compliance and performance
consistency across environments.

7.7. Differentiation beyond industry standards

EDB PG Al extends beyond traditional database functionality through a combination of open architecture,
enterprise hardening, and Al lifecycle integration via Al Factory.

Differentiator EDB Advantage Why It Matters

Postgres-native Built directly into Postgres viapgvector—  Simplifies architecture and ensures

vector engine no separate vector store or APl layer ACID compliance across workloads

Unified structured + SQL joinsacross vector andrelational Enables hybrid Aluse casessuchas

unstructured data data RAG+BI

Sovereign and hybrid |dentical functionality across on-prem, Meets data residency and compliance

deployments cloud, or hybrid mandates

Al Factory integration Embedding generation, retriever End-to-end Allifecycleinone
creation,and model orchestration ecosystem

External dataaccess Query dataacrossdifferentformatsand  Enables cross-domain Alanalytics

for unified analytics locations without ETL

Enterprise-grade security  Encryption, RBAC, auditlogging,and Trusted for sensitive workloadsin BFSI,
compliance alignment healthcare,and government
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7.8. The hardware-optimized path to Al production

The collaboration between EDB PG Al and Supermicro delivers a hardware-optimized foundation for building and
deployingintelligent, high-performance GenAl applications at scale while maintaining complete data sovereignty.

High-performance, high-efficiency Server Building Block Solutions combined with expert database tuning create

an optimized environment for enterprise Al workloads that remain fully within organizational control—on premises,
inhybrid environments, or at the edge.

Together, EDB PG Aland Supermicro are redefining the performance and value baseline for enterprise Al
infrastructure:

¢ 6x transaction throughput at peak level versus out-of-the-box community Postgres installations
* Upto90% better price/performance compared to running EDB on Amazon EC2 (on-demand pricing)
* Upto 83% better price/performance compared to Amazon EC2 with three-year savings plans®

This hardware-optimized approach eliminates the traditional cost and complexity barriers of Alinfrastructure.

By combining enterprise-grade server hardware with a unified transactional, analytical, and vector data engine,
organizations achieve superior performance while maintaining complete control over infrastructure, compliance,
and data sovereignty.

As strategic partners, EDB and Supermicro work together to ensure that customers can deploy EDB Postgres Al
onoptimally configured hardware, enabling them to harness the full power of Postgres for mission-critical GenAl
applications—whether deployed on-premises, in hybrid environments, or at the edge.

‘Running EDB Postgres Al on Supermicro hardware enables enterprises to break free from
cloud vendor lock-in while achieving superior performance, value, and faster time to production.
This partnership delivers the sovereignty and control enterprises demand without sacrificing the
performance their GenAl applications require.”

—Nancy Hensley, Chief Product Officer, EDB

7.9. Tosummarize

EDB PG Al delivers more than secure and compliant data infrastructure—it provides a software-optimized,
Postgres-native foundation for building and operationalizing Al at enterprise scale. By unifying transactional,
analytical, and vector workloads within a single governed environment, organizations gain the agility to innovate
without sacrificing control, compliance, or performance.

With this unified architecture, enterprises can move confidently from Al experimentation to production,
accelerating deployment cycles while maintaining sovereignty over data, models, andinfrastructure.

The following section, From capabilities to impact: Real-world use cases, demonstrates how EDB PG Al
translates these architectural advantages into measurable business outcomes—powering real-time intelligence,
automation, and innovation across industries such as financial services, healthcare, and manufacturing.
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8. From capabilities to impact:
Real-world use cases

Building on the unified foundation described above, EDB PG Al translates technical innovation into measurable
business outcomes. By combining transactional integrity, analytical scalability, and vector intelligence within a
single platform, organizations can operationalize GenAl applications where their data already resides, securely
andat scale. The following use cases illustrate how this vector-enabled architecture enables production RAG
applications, Alagents, and conversational Al systems across financial services, healthcare, manufacturing,
and beyond.

8.1.Industry-specific use cases

The following use casesillustrate how organizations across financial services, healthcare, and manufacturing
are leveraging EDB PG Al to deploy RAG applications, Al agents, and conversational Al systems that combine
the power of LLMs with enterprise data while maintaining data sovereignty, regulatory compliance,

and operational efficiency.

« Financial services: EDB PG Al supports financial institutions in handling the unique demands of banking,

insurance, and fintech: high transaction volumes, stringent compliance, high availability, latency-sensitive
analytics, and risk management.

Scenarios:

« Intelligent document processing: For RAG-based systems that analyze loan documents,
contracts, andregulatory filings, answer questions such as, “What are the risk factorsin this
mortgage portfolio?” by combining structured loan data with unstructured document analysis.

« Conversational banking assistants: Al agents built with GenAl Builder help customers
with accountinquiries, transaction disputes, and financial planning—all while maintaining PCI
compliance and data sovereignty.

« Regulatory compliance automation: Al agents continuously monitor transactions and
communications against regulatory requirements, generating compliance reports by querying
both structured transaction data and unstructured communications.

< Healthcare and life sciences: Healthcare and life sciences organizations face huge volumes of
structured and unstructured data (clinical records, trial data, imaging) under high regulatory burden
(HIPAA, data residency requirements). EDB PG Al provides a platform capable of handling relational and
vector workloads ina compliant, secure manner.

Scenarios:

« Clinical Al assistants: RAG applications help physicians by retrieving relevant patient
history, recent research, and treatment protocols—combining EHR data with
medical literature embeddings.

« Patient care coordination: Al agents automate care plan creation by analyzing patient
records, lab results, and clinical notes—all within HIPAA-compliant infrastructure.

« Medical research accelerator: GenAl Builder workflows enable researchers to query across
clinical trials, genomic data, and published literature without moving sensitive data outside
enterprise boundaries.

¢ Manufacturing and supply chain: Manufacturers rely on predictive maintenance, logistics optimization,

sensor analysis, and quality evaluation—each requiring the integration of structured data with
unstructured sources such asimages, logs, and loT feeds. EDB PG Al powers these vector-driven use
cases across a unified data environment.

Scenarios:

« Maintenance knowledge assistants: RAG systems help technicians troubleshoot equipment by

querying maintenance manuals, sensor data, and historical repair logs in naturallanguage.

« Supply chainintelligence: Al agents monitor supplier communications, logistics data, and market

signals to predict disruptions and recommend alternatives.

« Quality assurance copilots: GenAl applications assist quality inspectors by analyzing defect
images, comparing against historical patterns, and suggesting root causes.
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8.2. Other cross-sector and high-level use cases

Beyond those sector-specific examples, here are additional use cases supported by Al Factory:

Cognitive Al (semantic search and recommendation): Organizations embed unstructured
content (documents,images, logs) as vectors and run semantic search, recommendations,
and RAG inside Postgres.

Virtual expert/conversational Al agents: Use Al Factory’s tools (e.g., GenAl Builder, Agent Studio) to
build natural-language interfaces and knowledge-base assistants with access to vector indexes
of enterprise content.

Agentic analytics: Al agents autonomously query business data and generate insights using natural
language. Analysts ask, “Which product lines showed margin compression and why?” and agents
combine structured data with unstructured reports (stored as vector embeddings) to deliver contextual
answers. Agents proactively monitor key performance indicators, detect anomalies, and alert
stakeholders—democratizing data access without SQL expertise.

Agentic microservice management: Al agents monitor microservice health, logs, and dependenciesin
real time, automatically correlating issues across distributed systems. When incidents occur, agents trace
error patterns, query historical incident embeddings, and recommend remediation. Engineers ask, “Why
is the payment service slow?” and receive root cause analysis with resolution suggestions—reducing
mean time to resolution.

From foundational architecture to production deployment, EDB PG Al delivers the performance, governance, and

flexibility needed for enterprise Al success.
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9. Conclusion

The future of dataand Alis already here.

The convergence of Al and datainfrastructure represents the most significant shift in enterprise technology since
theinternet. Organizations that successfully integrate vector capabilities into their data platforms will define the
next decade of innovation.

EDB PG Al makes this transformation accessible today—not through incrementalimprovements but through a
fundamental reimagining of what a database can be. By unifying transactional, analytical,and Al workloads on a
single platform, we eliminate the complexity that has held enterprises back from realizing Al's full potential.

The numbers speak for themselves:
* 4.22x faster query performance via optimized indexing and intelligent query orchestration.!
« 18x greater storage efficiency through advanced compression and optimization.?
e 67% reduction in development complexity via automated Al pipelines and low-code GenAl Builder.®

But beyond the metrics lies amore profound truth: Alis not a separate workload—it's an integral part of every
modern application. EDB PG Al recognizes this reality and provides the foundation for a future in which every
queryisintelligent, every application is adaptive, and every decision is informed by the full context of your data.

Unlock the power of intelligent data today

Discover how EDB PG Al can transform your data infrastructure; unify transactional, analytical, and Al workloads;
and accelerate innovation. Start building applications in which every query is intelligent, every decision is data
driven,and Alis seamlessly embedded at scale.

Explore EDB PG Al: Visit enterprisedb.com to learn more about:

- EDBPostgres Al Platform | Read an Overview

« AlFactory|Use Cases

« Explore EDBPGAIDemos

« TalktoanExpert Today
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