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Introduction to EDB Postgres AI Factory AI Pipelines and aidb 

Overview
When accuracy, governance, and speed decide outcomes, keeping AI data and operations in one place becomes 
essential. This paper describes how EDB Postgres (PostgreSQL as packaged and supported by EnterpriseDB, 
or EDB), combined with pgvector and EDB Postgres AI Factory AI Pipelines, provides an omni-data foundation in 
which relational records, JSON documents, and vector embeddings are stored and queried together. By expressing 
ingestion, chunking, embedding, and refresh as first-class SQL operations, teams gain a dependable way to 
prepare data for retrieval-augmented generation (RAG) and to run semantic retrieval with the same reliability and 
controls they expect from core databases. By consolidating preparation and retrieval in one database, teams 
shorten time to first feature and gain clearer cost lines (storage, indexing, tokens) without the overhead of extra 
services and sync jobs.

AI Pipelines and the knowledge base
At the heart of this approach is AI Pipelines, a core capability of the EDB Postgres AI (EDB PG AI) platform, 
implemented by the aidb extension that formalizes AI data preparation. AI Pipelines turn document ingestion, 
content-aware chunking, and embedding into declarative steps that the database can schedule and monitor. The 
output is an AI knowledge base, represented as an aidb retriever asset: a set of generated tables containing vector 
embeddings plus the metadata and automation required to keep them in sync. To make terminology precise in 
this document: knowledge base (KB) refers to the generated Postgres tables (with PGVector embeddings and 
metadata) produced by aidb; an aidb retriever asset is the callable handle that uses those tables for similarity 
search via SQL. In practice, the KB follows the same backup/restore, replication, and point-in-time recovery 
procedures as any Postgres data, and its metadata/export routines make rebuilds repeatable and fast.

Retrieval and RAG
Because embeddings reside inside Postgres using pgvector, applications perform a similarity search via SQL and 
can combine it with transactional or metadata filters—such as jurisdiction, effective dates, or product lines—to 
narrow candidates before any reranking. This arrangement reduces false positives, stabilizes latency and cost, 
and makes retrieval observable with standard database tooling. It also aligns naturally with RAG: a precise vector 
search gathers context; the large language model (LLM) generates an answer that can be cited back to the stored 
sources. Because embeddings remain in Postgres, switching model providers or cloud endpoints becomes a 
configuration change—not a data migration—preserving optionality as models and economics evolve.

Information design and operations
Information design is central, as will be shown later in this document. Chunking, which is the process of breaking 
down larger data or information into smaller parts, should fit the content, not just the model’s limits. A content-
aware policy (typically around 200–300 tokens with modest overlap) preserves local references while maintaining 
precision. When warranted by evaluation, maintaining both sentence- and paragraph-level embeddings allows 
retrieval to choose the right granularity without sacrificing coherence. These policies can be defined and executed 
in aidb so that chunking remains consistent, reproducible, and auditable over time.

Operationally, the system favors throughput and resilience. For high-churn sources, queue-based workers 
generate embeddings in bulk, avoiding per-row triggers on hot OLTP tables and keeping write latency predictable. 
Knowledge-base tables follow the same replication, backup/restore, and PITR patterns as other Postgres data, 
and index maintenance (for example, HNSW/IVFFlat rebuilds) can be rehearsed alongside failover. Observability 
focuses on user-visible and operator-critical signals alike: p95 retrieval latency, embedding lag from landed to 
searchable, index health, and error budgets.
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Security and sovereignty
Security and sovereignty are designed inherently, not bolted on. Running preparation and retrieval inside Postgres 
means row-level security, role separation, data masking for non-production, and encryption at rest with TDE 
backed by KMS or Vault (available with EDB PG AI Hybrid Manager) applied uniformly to the same data the 
models use. Embeddings and source context can be hosted in specific jurisdictions or facilities to meet residency 
mandates while keeping retrieval and generation on platform.

Portability and optional tooling
Portability is preserved through the use of architecture rather than by promise. Embeddings and source context 
stay in Postgres, and model invocation flows through a small SQL facade, allowing organizations to evaluate 
or switch among providers (for example, Azure, Vertex, or self-hosted/NIM) without migrating embeddings or 
changing schemas. This avoids dependence on any single cloud’s vector store or AI SDK while retaining the 
freedom to adopt new models as they emerge. Because embeddings reside in Postgres, changing model providers 
or cloud endpoints becomes a configuration choice rather than a data migration, avoiding lock-in while preserving 
the retrieval quality and schema.

These capabilities stand on their own. That being said, Hybrid Manager can unify and automate environments, 
policy enforcement, and lifecycle operations across on-premises and cloud, but it is not required to build or operate 
the patterns described here. Organizations that have adopted the Postgres extensions needed for the omni-data 
solution can implement the pipelines, KBs, and SQL-based retrieval today; Hybrid Manager can be added later to 
centralize operations when desired.

Why this matters and what follows
This omni-data approach reduces moving parts, shortens the path from raw content to reliable answers, and 
concentrates governance where it is most effective. The sections that follow introduce the concrete pieces—data 
engineering steps, knowledge-base creation with AI Pipelines, chunking strategy, similarity search and RAG patterns, 
and operational safeguards—so teams can deliver accurate, citable AI features with confidence and control.

Data engineering for AI

1. Preparing data for AI Pipelines

Effective AI applications only perform as well as the data that trains and augments them. Data preparation is the 
initial, crucial step in feeding any AI pipeline with relevant and high-quality information.

1.1 Data collection and ingestion: AI Pipelines can ingest data from various sources:
•	 PostgreSQL tables: Directly from existing relational data 

•	 External object storage (via pgfs): Utilizing PostgreSQL File System (pgfs), an extension that abstracts 
access to files residing outside the PostgreSQL database, including S3-compatible object stores

•	 File systems: From local or networked file systems 

•	 Unstructured data: Supporting diverse unstructured formats such as PDFs, HTMLs, images, and audio; 
optical character recognition (OCR) for extracting text from images is a planned capability 

1.2 Data preprocessing: Before creating embeddings, data often requires preprocessing to ensure its 
quality and relevance:

•	 Cleaning: Raw data may need cleaning to remove noise, inconsistencies, or irrelevant information.

•	 Normalization: Data scales might need to be normalized to prevent bias, especially if values vary widely (e.g., 
from 1–10 vs. 100–5000).

•	 Structuring (for unstructured data): For unstructured data, the process might involve extracting textual 
content from documents or transcribing audio to prepare it for embedding generation.
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2. Creating embeddings

Embeddings are numerical fingerprints of data, translating words, sentences, or even entire documents into 
numerical vector representations. These vectors capture the semantic meaning of the data, allowing the AI model 
to understand context and perform similarity searches.

2.1 Role of embedding models
•	 Conversion: Embedding models are specifically designed to convert text (or other modalities) into these 

numerical vectors.

•	 Similarity search: These models enable semantic or similarity searches, where the system finds data points 
(vectors) that are geometrically “close” or semantically similar to a given query vector.

•	 Model-dependent accuracy: The choice of embedding model significantly impacts the accuracy and 
completeness of the queries. Different models will produce different vector dimensions and may behave 
differently.

2.2 Characteristics of embedding models
•	 Context window/max token size: Each model has a maximum amount of data (expressed in “tokens”) it can 

process at once. Passing too much data can lead to errors or silent truncation, meaning the model simply cuts 
off excess text without warning, potentially losing critical context.

•	 Dimensions: Models have a specific number of dimensions for their output vectors (e.g., 256, 512, 1024, 
3000). The vector column in the database must match the model’s dimensions. More dimensions can offer 
greater nuance and potentially better accuracy but may require more storage and might be slower.

•	 Versions: Models can have different versions, and these versions might not be entirely compatible or perform 
identically, even if the same name is shared.

•	 Behavior: Some models might explicitly send warnings if the input text is too large, while others might silently 
truncate it, making it crucial to test the chosen model’s behavior.

•	 Cost and performance: Different models impact how fast embeddings are generated and stored, and, 
ultimately, the performance of similarity searches.

2.3 Creating KBs and embeddings with aidb  

aidb simplifies the process of creating and managing embeddings:

•	 aidb.create_table_knowledge_base function: This function allows the creation of a KB from a source 
table, specifying the model name, the column containing the data to be embedded, and a primary key.

SELECT aidb.create_table_knowledge_base(

    name => ‘reviews_kb_tiny’,

    model_name => ‘nim-snowflake-arctic-embed-l’,

    source_table => ‘reviews_uniq_pk’,

    source_data_column => ‘review_text’,

    source_data_format => ‘Text’,

    source_key_column => ‘id’,

    batch_size => 100

);

•	 This automatically creates a dedicated table (e.g., KB_tiny_vector) for storing the embeddings and sets up 
triggers for keeping them in sync.
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•	 aidb.encode_text function: For direct testing or manual embedding generation, this function can be used 
to convert a text string into its vector embedding using a specified model.

SELECT aidb.encode_text(‘bert’,’What should I have for dinner in Raleigh, nc’);

•	 aidb.bulk_embedding: After creating a KB, you can initiate a bulk embedding process to generate 
embeddings for existing data.

•	 Automatic processing: KBs can be configured for real-time auto-preparation (triggered by new data inserts) 
or continuous background processing to ensure that data remains up to date. This uses triggers, which can 
cause slowdowns on production transactional tables.

•	 Primary key requirement: A table must have a single primary key to use automatic embeddings and KBs.

3. Chunking data

Chunking is the process of breaking down larger documents or text blocks into smaller, more manageable pieces 
before creating embeddings. This is essential for several reasons:

•	 Token limits: Embedding models have a maximum token length. If the text exceeds this limit, it will either be 
truncated or cause an error, leading to loss of context or failed processing. Chunking ensures that data fits 
within these limits.

•	 Context and precision: Small chunks can lead to higher precision in semantic search as they focus on 
specific ideas, but they may miss broader context. Large chunks reduce the number of vectors to search but 
risk pulling irrelevant sections.

•	 Embedding model behavior: Embedding models typically generate one vector for an entire input (e.g., a 
paragraph), regardless of its length. If a paragraph contains multiple unrelated ideas, a single embedding 
might dilute their individual meanings.

3.1 Chunking with aidb 
•	 ●	 aidb.create_table_preparer function: aidb provides a built-in function to perform chunking.

SELECT aidb.create_table_preparer(

    name => ‘chunk_critics’,

    operation => ‘ChunkText’,

    source_table => ‘critic_reviews_pk’,

    source_data_column => ‘review_text’,

    destination_table => ‘chunked_critic_reviews_pk’,

    destination_data_column => ‘review_text_chunks’,

    source_key_column => ‘id’,

    destination_key_column => ‘id’,

    options => ‘{“desired_length”: 256, “max_length”: 500 }’::JSONB

);

•	 aidb.bulk_data_preparation: After defining a preparer, the following can be used to perform bulk 
chunking on existing data.

•	 Live chunking: Similar to embeddings, chunking can be automated so that new data inserted into the source 
table is automatically chunked.
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4. Data engineering strategies for AI Pipelines

Effective data engineering is paramount for successful AI applications. The most important person in an 
organization for AI applications is often the data engineer.

4.1  Understanding your data 
•	 Consistency and patterns: Understand the consistency of the data and internal terms or concepts.

•	 Usage: Plan how users will interact with the data in the application.

•	 Value and classification: Not all data is equally valuable; consider data classification.

4.2  Testing embedding models and chunking
•	 Token limit testing: It is best practice to test the chosen embedding model with the data to understand its 

actual token limit and how it handles oversized inputs (truncation vs. error).

•	 Impact of chunking: Recognize that chunking is a trade-off. While it can improve precision, it might lose 
context, requiring careful design (e.g., overlapping chunks) or even multiple chunking strategies (e.g., 
paragraph-level and sentence-level embeddings in separate KBs).

•	 Joining data: If using chunked data, it may be best to join multiple tables (source, chunked, vector) to 
reconstruct full context for the AI model.

4.3 Performance and scalability considerations
•	 Triggers: Automatic embeddings and preparers use triggers, which can cause slowdowns if applied to high-

volume production transactional tables.

•	 Fast-changing data: Rapidly changing data can become a bottleneck for embedding generation. If inserts 
significantly outpace embedding processing rates (e.g., 1000 inserts/sec vs. 40–50 embeddings/sec), 
alternative parallel processing or asynchronous strategies may be needed.

•	 Resource management: It is good practice to be aware that embedding generation is resource intensive, 
requiring significant CPU and, potentially, GPU power.

4.4 Security and sovereignty
•	 Data sovereignty: Hybrid Manager provides a sovereign solution, allowing data to remain within the on-

premise or private cloud environments, which is crucial for sensitive data and regulatory compliance (e.g., 
BFSI, telco, public sector).

•	 Data masking: EDB Postgres AI includes data masking features (using the PostgreSQL anonymizer 
extension) to obscure sensitive data for development/testing environments without exposing raw production 
data, enhancing security at every layer.

•	 Air-gapped environments: The AI Factory can be deployed in air-gapped environments, ensuring complete 
network isolation for AI workloads and data.

•	 Encryption: Hybrid Manager supports Transparent Data Encryption (TDE) for data at rest using various key 
management services (passphrase, HashiCorp Vault, AWS KMS, Google Cloud KMS).

How does chunking impact embedding?
Chunking has a significant impact on how data is processed and utilized for embeddings, particularly in AI 
applications such as RAG.

1. Chunking and embeddings

Embedding models do not automatically break long paragraphs; if a full paragraph is passed, it generates a single 
vector for the entire input. This single vector represents the average meaning of the whole input, which can dilute 
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specific details and lead to poor precision. For example, a sentence blending opinions on different topics will result in 
a single vector that averages those distinct ideas. Therefore, chunking is often a necessary tool to achieve your aims.

1.1 Do you need to chunk?

“Do you have to chunk?” Yes, if the text or prompt is too large to fit the embedding model’s maximum token limit, it 
must either be chunked or truncated. Truncation is often undesirable as it can silently cut off critical information.

The size of the chunks is critical and affects both recall and precision in semantic search.

•	 Smaller chunks generally lead to higher precision because they allow for the retrieval of only the specific 
part that matches a query. For instance, if text is broken into sentences or small paragraphs, and each has 
its own embedding, the model can retrieve the exact sentence relevant to a query, which is crucial for RAG 
applications. However, smaller chunks also mean more storage and more vectors to search, and they risk loss 
of context if ideas span multiple sentences. For example, pronouns such as he or it might lose their meaning 
without the preceding sentence.

•	 Large chunks result in fewer vectors and potentially faster processing for general understanding, but they 
risk pulling irrelevant sections when matching, as multiple topics within a paragraph blend together. This can 
lead to diluted embeddings and reduced accuracy in semantic search.

1.2 Chunking strategies

There are a few different strategies to use when chunking, depending on your goal:

•	 Chunking size:

◦	 Fixed-size chunking: Splits text every X characters or tokens, which is fast but can awkwardly cut 
sentences.

◦	 Content-aware chunking: Splits text based on natural structure (e.g., paragraphs, sentences, section 
headers) to keep related ideas together. A common practice is to chunk at approximately 200–300 tokens 
with overlap to maintain context.

•	 Double chunking for enhanced accuracy: To balance precision and context, a technique called double 
chunking can be employed. This involves storing both sentence-level and paragraph-level embeddings. 
This allows for searching sentence embeddings for precision and falling back to paragraph embeddings for 
extra context, which can improve the relevancy of data and reduce “hallucinations” (inaccurate or made-
up information). However, this approach is more costly as it requires more storage and multiple semantic 
searches.

•	 Automated chunking in hybrid manager: The AI Pipelines feature within Hybrid Manager, using the aidb 
extension, provides a table preparer for automated chunking. This tool can intelligently break up text, though 
it may not cover all complex use cases. Users can also set up live chunking, where data inserted into a table is 
automatically chunked. However, this automated process uses triggers, which can cause potential slowdowns 
on production systems if not carefully managed. It’s also important to note that a primary key is required for 
using automatic embeddings and preparers.

•	 Performance and accuracy considerations:

◦	 Testing is crucial: It is best to test to determine the maximum token length that the embedding model can 
handle, as some models truncate silently without warning.

◦	 Hardware and tuning: Embedding and completion processes can be slow without proper hardware and 
tuning.

◦	 Fast-changing data: Rapidly changing data can quickly become a bottleneck, as the system might be 
limited in the number of embeddings it can generate per second.

◦	 Data engineering: The effectiveness of embeddings heavily relies on proper data engineering, including 
understanding where to chunk, how to chunk, and how to augment and filter data to ensure accuracy.
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1.3 Chunking: Takeaway

In summary, chunking is a vital preprocessing step that, when executed thoughtfully, can significantly enhance the 
precision and relevance of embeddings by preventing the dilution of meaning and focusing on specific contextual 
details, albeit with trade-offs in storage, performance, and the risk of losing broader context.

Understanding embeddings, similarity search, reranking, and RAG 
applications

This documentation provides an in-depth look at key concepts in AI-driven data retrieval and generation, focusing on 
how data is transformed, searched, and utilized to enhance applications such as RAG.

1. Introduction to embeddings

Embeddings are numerical representations or “fingerprints” of complex data, such as words, sentences, or images. 
They are essentially a list of numbers (a vector) that captures the meaning and relationships of an object. The 
core principle is that similar concepts will have similar numbers, placing them close together in a high-dimensional 
“conceptual space.” Instead of processing raw text or images, computers use these numerical fingerprints to 
quickly find related items, which is crucial for search, recommendation, and classification.

2. Embeddings in similarity search

Embeddings enable semantic search, which seeks to understand the intent and contextual meaning of a user’s 
query to provide more relevant results, rather than just matching keywords. This is distinct from full-text search, 
which looks for an exact match.

•	 How it works: PostgreSQL, for instance, uses vector embeddings to generate a numerical representation of 
a phrase. It then compares this vector to saved embeddings to determine how far away (or similar) phrases or 
words are from one another. For example, a search for workplace morale might return workplace satisfaction 
or job satisfaction due to their semantic similarity.

•	 Dimensions: Dimensions are the features or attributes that describe a piece of data. In similarity search, they 
can be thought of as a “score” indicating how close one phrase is to another.

◦	 Higher dimensions: Offer more nuance and better accuracy because words and phrases are farther 
apart in the conceptual space. However, this also means more disk space is required and search might be 
slower.

◦	 Lower dimensions: Require smaller disk space and enable faster search and build times, but may result in 
more matches and potentially less precision.

•	 Embedding models: Embeddings use specialized machine-learning models to create vectors. Key 
considerations for these models include:

◦	 Context/max token length: Each model has its own maximum input size it can process. If the text or 
prompt is too large, it must either be chunked or truncated, both of which can skew results. Some models 
might silently truncate input without warning if it exceeds their limit, leading to loss of context.

◦	 Versions: Models can have different versions that may not behave identically.

◦	 Dimensions: Each model has a specific number of dimensions for its vectors. Changing embedding 
models may require changes to the column dimension in the vector store.

◦	 Behavior: Models can behave differently; some throw errors for oversized input, while others truncate 
silently.

◦	 Accuracy and completeness: The choice of model significantly impacts the accuracy and completeness 
of the queries.

•	 Vector storage (pgvector): PostgreSQL’s pgvector extension enables a vector type column in standard 
PostgreSQL databases to store embeddings and execute similarity searches. This allows PostgreSQL to act 
as a hybrid transactional and vector database.
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3. Chunking and its impact on embeddings and similarity search

Chunking is the process of breaking down larger documents into smaller, more manageable data units. This is 
critical for ensuring similarity search works properly, especially when storing data in a database.

•	 Necessity: If the text or prompt is too large for the embedding model’s context window, it must either be 
chunked or truncated, both of which can skew results.

•	 How embedding models handle input: Embedding models do not automatically break long paragraphs. If a 
full paragraph is passed, they generate a single vector for the entire input, which can dilute specific details 
and lead to poor precision.

•	 Chunk size trade-offs: The size of chunks is crucial as it affects both recall and precision in semantic search.

◦	 Small chunks: Generally lead to higher precision as they allow for retrieving only the specific part that 
matches a query. However, smaller chunks also mean more storage, more vectors to search, and a risk of 
losing context if ideas span multiple sentences (e.g., pronouns such as he or it losing meaning without the 
preceding sentence).

◦	 Large chunks: Result in fewer vectors and potentially faster general processing but risk pulling irrelevant 
sections when matching, as multiple topics within a paragraph blend together, leading to diluted 
embeddings and reduced accuracy.

◦	 Common practice: A common approach is to chunk at approximately 200–300 tokens with overlap to 
help maintain context.

•	 Content-aware chunking: While fixed-size chunking is fast, content-aware chunking (e.g., by sentences, 
paragraphs, or section headers) aims to keep related ideas together.

•	 Double chunking: This technique involves storing both sentence-level and paragraph-level embeddings 
to balance precision and context. It may be possible to search sentence embeddings for precision and fall 
back to paragraph embeddings for extra context, which can improve relevancy and reduce “hallucinations.” 
However, this method is more costly due to increased storage and multiple semantic searches.

•	 Automated chunking: The aidb extension in Hybrid Manager offers a create_table_preparer function with 
an operation => ‘ChunkText’ option, which can intelligently break up text. However, for more complex 
chunking, custom code may be needed. Automated chunking using preparers and embeddings requires a 
primary key and uses triggers, which can cause potential slowdowns on production transactional tables. Fast-
changing data can also become a bottleneck, as the system might be limited in the number of embeddings it 
can generate per second.

4. Retrieval-augmented generation (RAG) applications

RAG applications augment generative AI (LLMs) with more relevant data that the LLM was not originally trained on. 
This allows LLMs to provide grounded and accurate responses by accessing specific, up-to-date, or proprietary 
information.

•	 Purpose: An LLM might know general contract law, but not the specific contracts. RAG “augments” or 
supplies this specific data to the LLM to provide contextual answers.

•	 Typical RAG workflow:

1.	 Data preparation: Your documents (e.g., PDFs, web pages, text files) are converted into vector 
embeddings and stored in a database (such as PostgreSQL with pgvector).

2.	 Prompt and search: A user’s prompt is also converted into an embedding.

3.	 Context retrieval: A similarity search is performed in the database using the prompt’s embedding to find 
the most relevant document chunks.

4.	 LLM augmentation: The retrieved relevant context is added to the original prompt, creating a new, 
enriched prompt for the LLM.

5.	 Response generation: The LLM uses this augmented prompt to generate a grounded and accurate 
response.
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•	 Data sources for retrieval: While semantic search and pgvector are commonly used for the retrieval (R) in 
RAG, the data does not have to come from a vector store. It can also originate from exact word searches, 
PDFs, traditional database queries, or API calls.

•	 Role of data engineering: The effectiveness of RAG applications heavily relies on data engineering. This 
includes understanding the data; knowing internal terms; predicting how users will interact with the data; and 
planning setup, configuration, and data shaping to optimize semantic search. Data classification also needs to 
be considered. There is no complete low-code or no-code solution for true enterprise use cases, emphasizing 
the need for data engineering.

5. Reranking

Reranking is a refinement step used to improve the quality of search results, typically as the final stage in a 
sophisticated retrieval system.

•	 How it works:

1.	 Initial search: A fast initial search (often using embeddings) retrieves a broad set of potentially relevant 
results (e.g., top 100 documents).

2.	 Reranking: A more powerful (and slower) model, often an LLM, then carefully examines this smaller set of 
documents against the original query. It reorders them to provide the best possible final relevance.

•	 Analogy: This is similar to quickly grabbing all chicken recipes (initial search) and then taking time to read 
through them to find the one that best matches spicy and quick (reranking). Reranking helps improve accuracy 
and refine results before presenting them to the user or an LLM.

6. Semantic search vs. LLMs and their collaboration

LLMs (large language models) and vector databases (which enable semantic search) serve different, 
complementary purposes.

•	 LLMs:

◦	 Purpose: To understand and generate human language. They process vast amounts of text (and other 
modalities) to learn patterns.

◦	 Functionality: They can summarize, translate, generate text, and answer questions based on their 
pretrained knowledge.

◦	 Limitations: Have a knowledge cutoff (only know data they were trained on) and can “hallucinate” or 
provide incorrect information. They mimic human interaction but are not infallible. Training LLMs on 
massive datasets can cost millions of dollars and take months.

◦	 Role in GenAI: The “brain” of the chatbot that generates the final humanlike response.

•	 Semantic search (vector databases):

◦	 Purpose: To store and quickly search for vector embeddings. They store numerical vectors representing 
the meaning of data.

◦	 Functionality: Finds data that is semantically similar to a given query.

◦	 Limitations: Cannot understand or generate natural language on its own. It is a search tool, not a 
conversational agent.

◦	 Role in GenAI: The “long-term memory” that stores and retrieves relevant context for the LLM.

•	 Collaboration:

◦	 LLMs are excellent at analyzing patterns, but they lack specific context beyond their training data. 
Semantic search provides this context by retrieving relevant information from a curated KB.

◦	 In a RAG application, the vector database acts as the “long-term memory” for the LLM, retrieving specific, 
relevant context that the LLM then uses to generate a more grounded and accurate response.
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◦	 Filtering for accuracy: Relying solely on similarity search can lead to false positives (e.g., Star Trek matching 
a Star Wars query due to shared space battles and pilot concepts). To mitigate this, filtering on data before 
or after vector search is crucial. This can involve combining vector search with traditional full-text search, or 
applying transactional filters based on specific keywords or metadata (e.g., filtering by movie title, state, or 
rating). This combined approach helps to shrink the dataset to highly relevant data quickly.

◦	 DBA’s role: While AI models (LLMs and semantic search) are masters at finding patterns, DBAs hold the 
critical business context. They understand the business logic, history, and nuances of the data, which is 
essential for guiding AI tools, verifying their output, and catching mistakes. The real value comes from 
combining the AI’s pattern recognition with the DBA’s context.

Example of an SQL-based chatbot
EDB Postgres AI’s aidb extension allows users to leverage AI functions directly within PostgreSQL, including 
summary functions and the creation of SQL-based RAG or chatbot functionalities.

Here are examples from the sources:

aidb summary functions

The aidb.summarize_text function is used to interact with an LLM to ask questions or generate summaries, 
much like a chatbot.

Example of using aidb.summarize_text:

SELECT aidb.summarize_text(

    input => ‘What should I have for dinner in Raleigh, nc’,

    options => ‘{“model”: “meta-nim-llama-33-nemotron-super-49b”}’

);

This query sends the input text What should I have for dinner in Raleigh, nc to the specified LLM (meta-nim-
llama-33-nemotron-super-49b) and returns a generated response, suggesting local restaurants such as Poland 
Park Barbecue or Capital City Barbecue. This demonstrates how to query an LLM directly from SQL.

SQL-based RAG/chatbot

It is possible to create custom SQL functions that encapsulate these aidb capabilities, effectively building a chatbot 
directly within the PostgreSQL database.

1. Basic SQL chatbot (askyonk): A simple chatbot function can be created to interact with an LLM and even define 
a persona for the AI.

Example SQL function askyonk:

CREATE OR REPLACE FUNCTION askyonk(input_text TEXT)

RETURNS TEXT AS

$$

SELECT aidb.summarize_text(

    input => ‘Answer like you are an expert DBA, Mid-40s, smart, from the midwest, you 
like sci-fi, sports, and video games. You explain things in human terms. Your name is Yonk 
Dont provide context on who I am in, or what I am, just answer the question. A human is 
reading this. : ‘ || input_text,
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    options => ‘{“model”: “meta-nim-llama-33-nemotron-super-49b”}’

);

$$

LANGUAGE SQL;

This askyonk function defines a specific persona (“an expert DBA, mid-40s, smart, from the midwest, you like sci-
fi, sports, and video games”) and uses it to frame the input before sending it to the LLM via aidb.summarize_text.

Example usage and output:

edb_admin=# select askyonk(‘in 100 words or less, what are the recommendations for setting 
the shared buffers in postgresql?’);

                                             askyonk

----------------------------------------------------------------------------------------------

 **Shared Buffers in PostgreSQL: Yonk’s Quick Byte**

 “Hey there! Setting PostgreSQL’s shared buffers optimally is key. Here’s my Midwest-
straight shootout:+

 * **Minimum**: 1/4 to 1/2 of total RAM (e.g., 4GB RAM → 1-2GB shared buffers)

 * **Ideal for most**: 1/2 to 3/4 of RAM (if dedicated DB server)

 * **Max (careful!)**: 75% of RAM (beware of OOM issues)

 * **Tune based on**:

         + `VACUUM /̀ ÀNALYZE` frequency (more → larger buffers)

         + Query patterns (lots of complex joins → more buffers)

         + Monitor `buffer_hits̀  (aim for >90% hit rate)

 Example (8GB RAM, dedicated server): `shared_buffers = 4GB̀  (~50% of RAM)”

 ---

 **Yonk** (DBA Extraordinaire)

 **Word Count: 99** (1 row)

As shown, the function responds to a query about PostgreSQL shared buffers, adhering to the specified persona 
and length constraint.

2. RAG chatbot with context (askyonkrag): For RAG applications, the chatbot needs to incorporate external context 
into its responses. This can be achieved by augmenting the LLM’s prompt with specific retrieved information.

Example SQL function askyonkrag:

CREATE OR REPLACE FUNCTION askyonkrag(input_text TEXT, rag_text TEXT)

RETURNS TEXT AS

$$
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SELECT aidb.summarize_text(

    input => ‘Answer like you are an expert DBA, Mid-40s, smart, from the midwest, you 
like sci-fi, sports, and video games. You explain things in human terms. Your name is Yonk 
Dont provide context on who I am in, or what I am, just answer the question. A human is 
reading this. : ‘ || input_text || ‘Use the following to augment your answer, weight this 
data higher: ‘ || rag_text,

    options => ‘{“model”: “meta-nim-llama-33-nemotron-super-49b”}’

);

$$

LANGUAGE SQL;

The askyonkrag function extends the basic chatbot by adding a rag_text parameter. This parameter allows 
the user to provide additional contextual data, and the prompt explicitly instructs the LLM to “weight this data 
higher” when formulating its response. This is crucial for RAG, where the AI first retrieves relevant facts from a KB 
(represented by rag_text in this example) and then uses that context to generate a more accurate and grounded 
answer.

These examples demonstrate how aidb functions enable flexible and powerful AI integration directly within the 
PostgreSQL environment using SQL.

Conclusion
An omni-data approach using EDB Postgres, with pgvector and AI Pipelines implemented by aidb, turns retrieval, 
RAG, and governance into first-class database solutions. By preparing content with consistent chunking policies, 
embedding it with a declared model, and retrieving through SQL with filters and optional reranking, teams move 
from prototypes to dependable features without multiplying services or control planes. The same operational 
disciplines already used for core data—replication, backup/restore, PITR, indexing, and observability—apply directly 
to the KB, keeping accuracy, latency, and cost inside a familiar envelope.

This posture also preserves freedom of choice. Embeddings and source context remain in Postgres, while 
model selection is abstracted behind a small SQL façade. Changing providers or deployment targets becomes 
a configuration change rather than a data migration, allowing quality, economics, and policy to drive decisions 
instead of lock-in. Security and sovereignty stay intact: row-level policies, masking, and encryption at rest protect 
the same tables that power retrieval and generation, including in environments with strict residency or air-gapped 
requirements.

Taken together, these practices shorten time to first feature, reduce synchronization and egress overhead, and 
make ongoing operations more predictable. The result is not just faster innovation but steadier ownership costs and 
clearer lines of accountability between data engineering, DBA operations, and application teams.

Recommended next steps

•	 Establish a small, versioned golden set and baseline metrics (recall/faithfulness, p95 retrieval latency, 
embedding lag, token spend).

•	 Stand up one end-to-end slice using AI Pipelines and pgvector: Ingest, chunk, embed, index, retrieve, 
rerank if needed, and return citations.

•	 Add operational guardrails: Queue-based embedding for high-churn sources, index rebuild drills, and alerts 
on embedding lag and index health.
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