EDB

POSTGRES /I

Oracle Database Migrations
to EDB Postgres”: Proven
Approaches with EDB Postgres

:-.%q? ndra Rao

.........

https://www.enterprisedb.com

Table of Contents
(@] 0 T=To] {1/ T

Introduction to Oracle migrations.........ceeeneeereeeeeeeeee e

Migration journey overview

Migration catalysts

Technical advantages of EDB Postgres

Migration approach frameWOrK.............ceeeerevereereeseeeeseseesesseseesssssessenss

Migration from OracCle...... et snsaens
A - Architectural differences and assessment

C - Conversion (schema and DDL)

T - Tooling and planning

| - Implementation (data and migration)

O - Operation (monitoring, automation, observability)

N - Normalization and validation

S - Switch and support

Appendix: Tool documentation lINKS.........ceveeeeeeessesseeereeeeeeseeeeseennns

FAY o Yo 101 1 g TS E= LU 11 o [0 oSV

EDB
O POSTGRES /1

Objective

This comprehensive best-practices guide provides an industry-standard approach for migrating enterprise Oracle
databases to EDB Postgres Advanced Server, leading IT professionals through the complete migration lifecycle
from initial assessment to production cutover. Using the proven ACTIONS framework and EDB-recommended
tools, it addresses the significant technical differences between Oracle and EDB Postgres platforms while
providing practical solutions to common migration challenges.

The guide leverages EDB’s built-in Oracle compatibility features—including PL/SQL support, packages, and
Oracle-compatible data types—to achieve 60%-80% automatic code conversion, reducing migration timelines
by 40%-60% compared to standard PostgreSQL migrations. By following these best practices, organizations can
minimize business risk, preserve critical Oracle functionality with minimal refactoring, ensure optimal performance
and security, and enable cost-effective digital transformation through a seamless transition to an enterprise-grade,
open source database platform.

Introduction to Oracle migrations

Migration journey overview

Oracle to EDB Postgres migrations follow a structured journey through the ACTIONS framework: Assessment
(analyzing Oracle features and dependencies), Conversion (schema and code transformation), Tooling (selecting
migration tools), Implementation (data migration execution), Operations (monitoring setup), Normalization
(validation), and Switch (production cutover). This proven methodology ensures predictable outcomes while
minimizing risk.

Migration catalysts

Organizations typically migrate from Oracle due to license cost reduction (eliminating expensive Oracle licensing),
cloud modernization (adopting cloud-native PostgreSQL), vendor independence (escaping Oracle lock-in),
compliance requirements (meeting open source mandates), and scalability needs (horizontal scaling with
PostgreSQL). Each catalyst drives different priorities in the migration approach.

Technical advantages of EDB Postgres

« Oracle compatibility benefits: EDB Postgres Advanced Server provides native PL/SQL execution,
eliminating extensive code rewrites. Oracle packages (DBMS_, UTL_) run directly, preserving business logic.
Compatible data types (NUMBER, VARCHARZ2, DATE) reduce conversion effort. Oracle-style triggers and
functions work with minimal changes, achieving 60%-80% automatic compatibility.

- Enterprise features: Beyond compatibility, EDB Postgres offers transparent data encryption, SQL Protect
for injection prevention, EDB Failover Manager for automatic high availability, and Oracle-compatible
partitioning. These features ensure that enterprise requirements are met while reducing total cost of
ownership by up to 80% compared to Oracle.

« Migration acceleration: EDB tools and compatibility features typically reduce migration effort by 40%-60%
compared to community PostgreSQL, enabling faster ROl and lower project risk while maintaining Oracle’s
enterprise capabilities.

EDB

OO POSTGRES 3

Migration approach framework

We will use the ACTIONS framework—a proven, seven-phase methodology for migrating from Oracle to EDB
Postgres.

The framework provides a repeatable process that guides IT professionals through the entire migration lifecycle,
minimizing risks and ensuring successful outcomes. Each phase builds upon the previous one, creating a logical
progression from understanding the current state to executing the migration and establishing ongoing operations.

The ACTIONS framework:

A - Architectural compatibility and assessment: Analyze current state, evaluate compatibility differences,
identify application challenges, and define migration requirements.

C - Conversion (schema and DDL): Convert database structures and definitions from source syntax to
PostgreSQL-compatible formats.

T - Tooling and planning: Select migration tools, develop detailed plans, establish success criteria, and
implement risk-mitigation strategies.

| - Implementation (data migration): Execute data migration, optimize performance, and handle data
transformations.

O - Operation: Establish monitoring, automation, and observability for ongoing database health post-
migration.

N - Normalization and validation: Conduct compliance checks, data validation, and testing to ensure
accuracy and regulatory adherence.

S - Switch and support: Execute controlled cutover, provide post-migration monitoring, and complete
operational handoff.

This framework applies consistently across Oracle, SQL Server, CockroachDB, and MongoDB while addressing
each platform’s unique architectural differences and migration challenges. Each database section follows this
process with platform-specific guidance.

Migration from Oracle

A - Architectural differences and assessment

Core architectural differences

OO POSTGRES

Instance vs. database model: Compare Oracle’s instance-database architecture with SGA/PGA memory
structures versus EDB Postgres’s simpler cluster-database model: Oracle RAC for multi-node clustering has
no direct equivalent, requiring application-level changes or read replicas. Tablespaces and data files map
differently to PostgreSQL:s file-per-table approach. Undo/redo architecture versus PostgreSQLs WAL and
MVCC implementation.

Process architecture: Compare Oracle’s background processes (PMON, SMON, DBWn) versus
PostgreSQL’s simpler process model: Dedicated/shared server modes versus PostgreSQL’s process-per-
connection requiring connection pooling. Automatic Memory Management versus manual configuration of
shared_buffers and work_mem. Result cache and buffer cache differences affecting performance tuning.

High-availability differences: Compare Oracle Data Guard with physical/logical standby versus EDB
Postgres streaming replication. Fast-Start Failover versus EDB Failover Manager for automatic failover.
Flashback technologies require different approaches in PostgreSQL. Active Data Guard for read-only
replicas versus PostgreSQL hot standby.

EDB

SQL and feature compatibility with EDB

EDB Oracle compatibility: EDB supports 85% of PL/SQL syntax including packages, triggers, and functions.
Oracle packages (DBMS_OUTPUT, UTL_FILE, DBMS_JOB) work directly. Oracle data types (VARCHAR2,
NUMBER, DATE with time) are native. Hierarchical queries (CONNECT BY) are supported, unlike

community PostgreSQL.

Remaining differences, RAC-specific features: These require application redesign. Advanced Queuing
needs alternative message queue solutions. Materialized view fast refresh is not fully supported. Database
Vault and Label Security need different security approaches. Flashback Query/Table requires
trigger-based solutions.

Applicationimpact assessment

Connection layer changes: These replace OCI/JDBC thin drivers with EDB-compatible drivers maintaining
most connection parameters. TNS names resolution changes to standard host/port configuration.
Connection pooling moves from Oracle shared servers to PgBouncer/Pgpool.

Global temporary tables: These work differently in session scope.

PL/SQL code migration: Most PL/SQL procedures run unchanged in EDB (70%-80% compatibility).
Packages maintain structure with minor syntax adjustments. REF CURSORS and BULK COLLECT supported
with slight modifications. Dynamic SQL requires minor EXECUTE IMMEDIATE adjustments. Autonomous
transactions are supported through PRAGMA implementation.

Assessment methods and tools

EDB assessment solutions: The EDB Migration Portal provides web-based assessment without installing
software, analyzing Oracle databases remotely to identify compatibility and complexity. EDB Migration
Toolkit in assessment mode evaluates database objects and generates compatibility reports. EDB
Professional Services offers custom assessment tools for single to bulk database evaluations with detailed
migration roadmaps.

Third-party assessment tools: Ispirer SQLWays performs comprehensive Oracle assessment with
automated complexity scoring and effort estimation. ora2pg with --type SHOW_REPORT provides detailed
migration analysis with A-E complexity ratings and person-day estimates.

AWS SCT generates assessment reports for Oracle to PostgreSQL/Aurora migrations.

Manual Oracle analysis: Query DBA_FEATURE_USAGE_STATISTICS for licensed features requiring
alternatives. Check V$SQL for most-executed statements needing performance validation. Review DBA _
DEPENDENCIES for complex object relationships. Analyze AWR reports for workload patterns and
resource usage.

C - Conversion (schema and DDL)

Schema conversion approach

Automated conversion with EDB tools: EDB Migration Portal provides web-based assessment and schema
conversion without local installation, analyzing Oracle databases remotely and generating downloadable

DDL scripts. EDB Migration Toolkit converts 80%-85% of Oracle schemas automatically, including

tables, indexes, constraints, views, and PL/SQL objects. Both tools preserve Oracle-compatible mode for
VARCHAR2, NUMBER, and DATE behaviors while keeping package structures intact.

Manual conversion requirements: Index-organized tables need conversion to regular tables with clustered
indexes. Partitioning syntax requires adjustment despite EDB support. Virtual columns convert to generated
columns or views. External tables need Foreign Data Wrapper configuration. RAC-specific objects (services,
TAF configurations) require removal or redesign.

EDB

OO POSTGRES 5

Key conversion challenges

Oracle-specific SQL features: CONNECT BY NOCYCLE is supported in EDB but may need optimization.
MODEL clause requires complete rewrite using CTEs. PIVOT/UNPIVOT needs crosstab extension or CASE
statements. Flashback queries require temporal table design. MERGE statement works in EDB with minor
syntax adjustments.

PL/SQL to EDB SPL packages: This works directly but might need EDITIONABLE keyword removal.
PRAGMA directives are mostly supported except for RESTRICT_REFERENCES. Dynamic SQL with
EXECUTE IMMEDIATE requires minor formatting. Collections and arrays need syntax adjustments for bulk
operations. Exception handling preserves Oracle error codes in EDB.

Storage and performance objects: Tablespace management is simplified in PostgreSQL, with less granular
control. Materialized views lose fast refresh on commit capability. Function-based indexes are supported
but display different optimizer behavior. Bitmap indexes convert to B-tree or GIN indexes. Result cache
features need application-level caching.

Conversion tools and workflow

EDB conversion solutions: Migration Portal is for initial remote assessment and DDL generation. Migration
Toolkit supports integrated schema and data migration with dependency management. EDB SPL Check
extension validates converted PL/SQL code, performing syntax checking, semantic analysis, and identifying
performance issues in stored procedures.

Third-party tools: With ora2pg, use SHOW_REPORT for assessment, then DDL export for schema conversion
with selective object migration. Ispirer SQLWays is a commercial tool with intelligent PL/SQL pattern
recognition and optimization recommendations.

Validation and testing

Code validation: Use EDB SPL Check to validate all converted PL/SQL procedures and packages. Run
spl_check_function() for individual functions or batch validation. Review warnings for performance anti-
patterns and deprecated syntax.

Schema verification: Compare object counts between Oracle and EDB. Validate dependencies and
reference integrity. Test sample procedures with production-like data. Document remaining incompatibilities
for manual resolution.

T - Tooling and planning

Tool selection strategy

OO POSTGRES

EDB migration suite: Use Migration Portal for cloud-based assessment and DDL conversion without
infrastructure setup. Migration Toolkit provides comprehensive schema and data migration with Oracle
compatibility. EDB SPL Check is for PL/SQL code validation post-conversion. Use LiveCompare for data
validation between Oracle and EDB during migration.

Supplementary tools: ora2pg provides detailed complexity assessment and custom migration scenarios.
EDB Replication Server offers near-zero downtime migrations via CDC. pgBackRest or Barman are backup
strategies replacing RMAN. PgBouncer is for connection pooling, replacing Oracle shared servers.

Tool selection criteria: Use Migration Portal for initial assessment and POC. Deploy Migration Toolkit for
production migrations with EDB compatibility. Add Replication Server for minimal downtime requirements.
Plan 70% effort on schema/code conversion, 30% on data migration.

EDB

Migration planning framework

Phase 1: Discovery: Run Migration Portal assessment for complexity scoring. Analyze AWR reports for
performance baselines. Identify RAC dependencies and Oracle-specific features. Size EDB infrastructure based
on Oracle resource usage.

Phase 2: Preparation: Convert schemas using Migration Toolkit, validate with SPL Check. Set up an EDB test
environment with production-like data. Configure Replication Server for CDC if required. Train team on EDB
administration and PL/SQL differences.

Phase 3: Execution: Execute phased migration: noncritical — read-heavy — core systems. Run LiveCompare
for continuous data validation. Test application functionality with the converted database. Document and resolve
remaining incompatibilities.

Critical planning considerations

Complexity multipliers: Add 2x time for heavy PL/SQL usage (packages, procedures). Factor 3x effort for RAC
to single-instance conversion. Include a 2x buffer for applications using Oracle-specific features. Simple migrations
average 4-6 weeks; average complex Oracle systems last 3-4 months.

Risk mitigation: Test EDB SPL. Check early to identify code issues. Validate that LiveCompare can handle your
data volumes. Plan for Oracle features without EDB equivalents (Flashback, Advanced Queuing). Maintain Oracle
for 30-day rollback capability.

Success criteria: Proceed if PL/SQL compatibility exceeds 70% and single-instance performance meets SLAs.
Reconsider whether the project requires RAC active-active or Oracle-specific advanced features. Evaluate EDB
Enterprise features versus community PostgreSQL based on requirements.

| - Implementation (data and migration)

Migration strategy selection

Offline migration (maintenance window): Use EDB Migration Toolkit for complete schema and data migration
during downtime; best for databases under 500GB with 4-8 hour maintenance windows. It provides the highest
data consistency and simplest execution.

Online migration (near-zero downtime): Deploy EDB Replication Server for trigger-based or log-based CDC
from Oracle to EDB. It enables continuous sync with minimal downtime for cutover and is required for 24x7 systems
or databases over 1TB.

Hybrid approach: Initially, load with Migration Toolkit, then Replication Server for incremental changes. This is
recommended for most production migrations and allows an extended testing period before cutover.

Implementation tools

EDB Migration Toolkit: Configure with -dataOnly for data migration after schema conversion. Use -batchSize
parameter for memory optimization (default 1000 rows). Enable parallel processing with -loaderCount for multiple
tables. Monitor progress through detailed logging and status updates.

EDB Replication Server: Set up publication on the Oracle source using trigger or LogMiner-based capture.
Configure subscription on the EDB target with conflict resolution rules. This supports filtered replication and
transformation rules and enables bidirectional sync for phased migrations.

Data validation with LiveCompare: Configure connections to both Oracle and EDB databases. Define comparison
rules and exclusions for system columns. Run continuous comparisons during the migration window. Generate
detailed reports of data discrepancies.

EDB

O POSTGRES /1 7

Performance optimization techniques

Pre-migration tuning: This disables foreign keys and triggers during bulk loads. Set maintenance_work_
mem = 4GB, checkpoint_segments = 256.Increase max_wal_size = 10GB for large transactions.
Configure synchronous_commit = off temporarily.

During migration: Use Migration Toolkit’s -truncLoad to clear target tables before loading. Enable -dataOnly
-constraints to defer constraint creation. Run multiple toolkit instances for different schemas in parallel.
Monitor Oracle wait events and EDB pg_stat_activity.

Post-migration optimization: Reenable constraints with ALTER TABLE ... VALIDATE CONSTRAINT.Run
VACUUM ANALYZE on all migrated tables. Reset configuration parameters to production values. Execute the
LiveCompare final validation before cutover.

Cutover strategy

Final sync steps: Stop application writes to Oracle or enable read-only mode. Process final Replication
Server changes or run last Migration Toolkit sync. Validate critical data with LiveCompare spot checks. Update
sequences to match Oracle current values.

Validation checkpoints: Verify that row counts match between systems. Confirm that PL/SQL packages
execute without errors. Test application connectivity and basic transactions. Document any data
discrepancies for business acceptance.

O - Operation (monitoring, automation, observability)

Monitoring essentials

Performance monitoring transition: Replace Oracle AWR/ASH reports with EDB’s pg_stat_statements and
edb_wait_states. Monitor EDB Advanced Server-specific views such as edb_session_waits for Oracle-
like wait analysis. Transition from Oracle Enterprise Manager to PEM (Postgres Enterprise Manager) for
comprehensive monitoring. Track PL/SQL performance using EDB SPL profiler, replacing Oracle’s DBMS_
PROFILER.

Key metrics migration: Shift from Oracle V$SYSSTAT to PostgreSQL pg_stat_database and custom
metrics. Replace alert log monitoring with PostgreSQL log analysis using pgBadger. Monitor tablespace
usage differently due to PostgreSQL’s simpler storage model. Track vacuum activity and bloat, concepts not
present in Oracle.

Automation framework

EDB
O POSTGRES /1

Job scheduling migration: Convert Oracle DBMS_SCHEDULER jobs to EDB DBMS_JOB package or
pg_cron. Migrate Oracle maintenance windows to PostgreSQL vacuum and analyze schedules. Replace
automatic statistics gathering with custom analyze scripts. Transform data pump export schedules to
pgBackRest or Barman policies.

Operational automation: Configure EDB Failover Manager to replace Oracle Data Guard broker. Set

up automated backups with pgBackRest replacing RMAN scripts. Implement connection pooling with
PgBouncer for Oracle shared server replacement. Create partition maintenance scripts replacing Oracle
interval partitioning.

Observability platform

EDB-specific monitoring: Deploy Postgres Enterprise Manager (PEM) for enterprise monitoring replacing
OEM. Configure EDB Audit for compliance, replacing Oracle Audit Vault. Monitor Oracle compatibility layer
performance with EDB-specific metrics. Track SPL function execution statistics and performance patterns.

Alerting configuration: Set alerts for PL/SQL errors in EDB SPL functions. Monitor Oracle package
execution failures and performance degradation. Configure replication lag alerts for EDB Replication Server.
Track connection exhaustion without Oracle’s connection multiplexing. Alert on vacuum freeze approaching
replacing Oracle’s automatic segment management.

Integration points: Connect PEM to existing monitoring tools via REST API. Export metrics to Prometheus/
Grafana for unified dashboards. Configure log shipping to centralized logging platforms. Integrate with
ticketing systems for alert management.

N - Normalization and validation

Data validation strategy

Row count verification: Compare Oracle’s SELECT COUNT(*) FROM user_tables with EDB’s table counts.
Use LiveCompare for automated row count validation across all tables. Account for Oracle partitioned
tables mapped to PostgreSQL partitions. Document expected differences from filtered or excluded objects.

Data integrity with LiveCompare: Configure LiveCompare for continuous data comparison during migration.
Define comparison rules excluding Oracle-specific columns (ROWID, ORA_ROWSCN). Set tolerance levels
for NUMBER to NUMERIC precision differences. Generate detailed discrepancy reports for investigation.

NULL and empty string handling critical difference: Oracle treats empty strings (") as NULL, while
PostgreSQL maintains them as distinct values. EDB solution: Enable edb_redwood_strings = truein
postgresql.conf to make EDB treat empty strings as NULL, as Oracle does. For VARCHAR2 columns, EDB
automatically handles this in Oracle-compatible mode. Alternative approach: Create database triggers to
convert empty strings to NULL on INSERT/UPDATE if redwood mode isn’t suitable. This eliminates most
application changes for NULL handling.

PL/SQL validation

Code functionality testing: Use EDB SPL Check to validate all converted procedures and packages. Run
spl_check_function() for syntax and semantic verification. Execute test cases for critical business logic
procedures. Compare Oracle DBMS_OUTPUT with EDB equivalents.

Package validation: Verify that Oracle packages (DBMS_, UTL_) work correctly in EDB. Test package
variables and initialization blocks behavior. Validate cursor handling and REF CURSOR functionality.
Confirm that exception handling preserves Oracle error codes.

Schema validation

O POSTGRES /1

Object completeness: Compare Oracle DBA_OBJECTS count with EDB catalog views. Verify that all
constraints are maintained, including check, unique, and foreign keys. Validate that indexes are converted
appropriately, including function-based indexes. Confirm that sequences current values match Oracle.

Oracle compatibility features: Test that hierarchical queries (CONNECT BY) return the same results. Verify
that synonyms and database links work as expected. Validate global temporary tables session behavior.
Confirm that Oracle data types (VARCHAR2, NUMBER) behave correctly.

EDB

Compliance and sign-off

+ Performance baseline comparison: Run critical queries on both platforms using EXPLAIN PLAN
comparison. Document performance differences as new baselines. Verify that PL/SQL execution times are
within acceptable ranges. Validate that batch job completion times meet SLAs.

« Acceptance criteria: Achieve 100% data migration, verified by LiveCompare. Verify that all critical PL/SQL
packages are executing without errors and that performance is within 20% of Oracle baselines (some queries
may be faster). Verify that business process validation has completed successfully.

- Final validation checklist: LiveCompare shows zero critical data discrepancies. SPL Check reports no severe
issues in converted code. Application testing has completed with no Oracle-specific errors. Backup and
recovery tested successfully on EDB platform.

S - Switch and support
Go-live preparation

» Cutover rehearsal: Execute complete migration in staging with production data volumes. Test with edb_
redwood_strings and Oracle compatibility settings enabled. Validate PL/SQL packages and critical business
processes. Document exact cutover timings and rollback procedures.

 Final configuration check: Verify EDB Oracle compatibility parameters: edb_redwood_strings, oracle_
mode, edb_stmt_level_tx. Configure EDB Failover Manager for automatic failover readiness. Set up PEM
monitoring alerts and dashboards. Validate pgBackRest or Barman backup schedules.

Application cutover

« Connection updates: Replace Oracle TNS names with EDB connection strings. Update JDBC URLs
from jdbc:oracle:thin to jdbc:edb://. Maintain most connection parameters due to EDB compatibility.
Configure PgBouncer for connection pooling if needed.

« Cutover execution: Enable Oracle read-only or restricted mode. Run final EDB Replication Server sync or
Migration Toolkit delta load. Execute LiveCompare for final validation. Switch application connections to EDB.
Keep Oracle running for immediate rollback option.

Post-migration support

- Stabilization monitoring (first 72 hours): Monitor PL/SQL execution errors in PostgreSQL logs. Track
Oracle package performance in production load. Watch for connection pool sizing issues. Check vacuum
and analyze, keeping up with transaction volume. Monitor for any NULL/empty string handling issues.

- Knowledge transfer: Train DBAs on EDB-specific features: SPL debugging, Oracle package management,
redwood mode implications. Document differences in backup/recovery using pgBackRest versus RMAN.
Explain PEM navigation for Oracle DBAs familiar with OEM. Create runbooks for common EDB administration
tasks.

« Oracle to EDB operational differences: Document how tablespace management differs from Oracle.
Explain vacuum/analyze versus Oracle’s automatic segment management. Clarify WAL archiving versus
Oracle archive logs. Define new procedures for partition maintenance without Oracle’s automation.

EDB

O POSTGRES /1 10

Success handoff

« Acceptance criteria: These include stable operation for 14 days without critical issues. All PL/SQL packages
are running successfully. LiveCompare shows that data consistency is maintained. Performance is meeting or

exceeding Oracle baselines.

+ Decommission planning: Maintain Oracle in read-only for 30 days as a safety net. Archive Oracle data before
shutdown if required for compliance. Document any Oracle features not migrated, for future consideration.

Transfer Oracle licenses per vendor requirements.

» Long-term optimization: Schedule training on EDB SPL optimization techniques. Plan a review of converted

PL/SQL for PostgreSQL-native improvements. Consider gradual migration from Oracle packages to

PostgreSQL extensions where beneficial. Establish performance-tuning practices specific to EDB Postgres.

Appendix: Tool documentation links

EDB migration suite

Assessment and planning

« EDB Migration Portal: www.enterprisedb.com/docs/migration_portal/latest
- EDB Migration tools overview: www.enterprisedb.com/docs/migrating/oracle/edb_migration_tools

Migration and replication

- EDB Migration Toolkit: www.enterprisedb.com/docs/migration_toolkit/latest
- EDB Replication Server: www.enterprisedb.com/docs/eprs/latest

Validation and testing

» EDB SPL Check: www.enterprisedb.com/docs/pg_extensions/spl_check
» LiveCompare: www.enterprisedb.com/docs/livecompare/latest

Operations and management
+ EDB Postgres Advanced Server: www.enterprisedb.com/docs/epas/latest
» Postgres Enterprise Manager (PEM): www.enterprisedb.com/docs/pem/latest
- EDB Failover Manager: www.enterprisedb.com/docs/efm/latest

Third-party migration tools

Assessment and conversion

e ora2pg: ora2pg.darold.net/documentation.html
« AWS Schema Conversion Tool: docs.aws.amazon.com/SchemaConversionTool/latest/userguide
- Ispirer SQLWays: www.ispirer.com/products/oracle-to-postgresgl-migration

Data migration and CDC

« pgloader: pgloader.readthedocs.io/en/latest
» Debezium: debezium.io/documentation

EDB

POSTGRES

https://www.enterprisedb.com/docs/migration_portal/latest/
https://www.enterprisedb.com/docs/migrating/oracle/edb_migration_tools/
https://www.enterprisedb.com/docs/migration_toolkit/latest/
https://www.enterprisedb.com/docs/eprs/latest/
https://www.enterprisedb.com/docs/pg_extensions/spl_check/
https://www.enterprisedb.com/docs/livecompare/latest/
https://www.enterprisedb.com/docs/epas/latest/
https://www.enterprisedb.com/docs/pem/latest/
https://www.enterprisedb.com/docs/efm/latest/
https://ora2pg.darold.net/documentation.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/
https://www.ispirer.com/products/oracle-to-postgresql-migration
https://pgloader.readthedocs.io/en/latest/
https://debezium.io/documentation/

PostgreSQL ecosystem tools

Backup and recovery

« pgBackRest: https://pgbackrest.org/user-guide.html
e Barman: docs.pgbarman.org

High availability
« Patroni: patroni.readthedocs.io/en/latest

Connection and performance
« PgBouncer: www.pgbouncer.org/usage.html
» Pgpool-ll: www.pgpool.net/docs/latest/en/html
» pgBadger: pgbadger.darold.net/documentation.html

Additional resources
- EDB documentation center: www.enterprisedb.com/docs
- EDB Migration Handbook: www.enterprisedb.com/docs/migrating/oracle
« EDB Oracle compatibility guide: www.enterprisedb.com/docs/epas/latest/epas_compat_ora_dev_guide
» PostgreSQL Documentation: www.postgresqgl.org/docs

About the author

Raghavendra Rao
Senior Practice Leader, Global Migrations, EDB

m Connecton LinkedIn

Raghavendra Rao is a senior practice leader in global migration and an accomplished
database professional with more than two decades of experience across enterprise
and open source platforms. A passionate community contributor, he shares his
expertise through blogging, presentations, and training, drawing inspiration from the
global PostgreSQL community.

About EDB Postgres Al

EDB Postgres Al is the first open, enterprise-grade sovereign data and Al platform, with a secure, compliant, and
fully scalable environment, on premises and across clouds. Supported by a global partner network, EDB Postgres Al
unifies transactional, analytical, and Al workloads, enabling organizations to operationalize their data and LLMs where, - EDB

when, and how they need them. ~ o
POSTGRES /I

© EnterpriseDB Corporation 2026. All rights reserved

https://www.linkedin.com/in/raghavendra-rao-328495b7/
https://pgbackrest.org/user-guide.html
https://docs.pgbarman.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgbouncer.org/usage.html
https://www.pgpool.net/docs/latest/en/html/
https://pgbadger.darold.net/documentation.html
https://www.enterprisedb.com/docs/
https://www.enterprisedb.com/docs/migrating/oracle/
https://www.enterprisedb.com/docs/epas/latest/epas_compat_ora_dev_guide/
https://www.postgresql.org/docs/

	Objective
	Introduction to Oracle migrations
	Migration journey overview
	Migration catalysts
	Technical advantages of EDB Postgres

	Migration approach framework
	Migration from Oracle
	A - Architectural differences and assessment
	C - Conversion (schema and DDL)
	T - Tooling and planning
	I - Implementation (data and migration)
	O - Operation (monitoring, automation, observability)
	N - Normalization and validation
	S - Switch and support

	Appendix: Tool documentation links
	About the author

