
1
enterprisedb.com

Non-Oracle Database
Migrations to EDB Postgres:
Proven Approaches with
EDB Postgres
Raghavendra Rao

https://www.enterprisedb.com

2

Table of Contents

Objective...3

Introduction to non-Oracle migrations...3

Migration approach framework..3

Migration from MS SQL Server...4
A - Assessment and architectural differences..4

C - Conversion (schema and DDL)...5

T - Tooling and planning...6

I - Implementation (data and migration)...7

O - Operation (monitoring, automation, observability)..7

N - Normalization and validation..8

S - Switch and support...9

Migration from CockroachDB...10
A - Assessment and architectural differences.. 10

C - Conversion (schema and DDL)... 11

T - Tooling and planning... 11

I - Implementation (data and migration)... 12

O - Operation (monitoring, automation, observability).. 13

N - Normalization and validation.. 14

S - Switch and support... 14

Migration from MongoDB...16
A - Assessment and architectural differences.. 16

C - Conversion (schema and DDL)... 16

T - Tooling and planning... 17

I - Implementation (data and migration)... 18

O - Operation (monitoring, automation, observability).. 18

N - Normalization and validation.. 19

S - Switch and support...20

About the author...20

3

Objective
This best-practices guide provides a comprehensive, industry-standard architecture for migrating enterprise
applications and data from non-Oracle databases—specifically Microsoft SQL Server, CockroachDB, and
MongoDB—to EDB Postgres. The goal is to lead IT professionals and decision-makers through the whole
migration lifecycle, from initial evaluation and planning to execution, validation, and production cutover.

The document outlines the most significant technological differences between the source and target platforms,
discusses the common issues that arise during migration, and provides practical solutions and guidance on how
to mitigate them. It uses EDB-recommended tools and processes to give practical assistance for streamlining
migration operations; lowering operational and business risks; and ensuring optimum performance, security,
and maintainability of EDB Postgres workloads. Organizations may support their long-term digital transformation
goals by embracing these best practices and achieving a seamless, cost-effective, and future-ready move
to EDB Postgres.

Introduction to non-Oracle migrations
•	 Brief overview of the migration journey: Assessment, Planning, Migration, Validation, and Go-Live

•	 Migration catalysts/scenarios

•	 Highlight the technical advantages of moving to EDB Postgres from MS SQL, CockroachDB, and MongoDB;
highlight benefits per unique scenario

Migration approach framework
The ACTIONS framework will be used—a proven, seven-phase methodology for migrating from Microsoft SQL
Server, CockroachDB, and MongoDB to EDB Postgres.

The framework provides a proven, repeatable process that guides IT professionals through the entire migration
lifecycle, minimizing risks and ensuring successful outcomes. Each phase builds upon the previous one, creating
a logical progression from understanding the current state to executing the migration and establishing
ongoing operations.

The ACTIONS framework:

A - Assessment and architectural compatibility: Analyze the current state, evaluate compatibility differences,
identify application challenges, and define migration requirements.

C - Conversion (schema and DDL): Convert database structures and definitions from source syntax to
PostgreSQL-compatible formats.

T - Tooling and planning: Select migration tools, develop detailed plans, establish success criteria, and
implement risk-mitigation strategies.

I - Implementation (data migration): Execute data migration, optimize performance, and handle data
transformations.

O - Operation: Establish monitoring, automation, and observability for ongoing database health post-migration.

N - Normalization and validation: Conduct compliance checks, data validation, and testing to ensure accuracy
and regulatory adherence.

S - Switch and support: Execute controlled cutover, provide post-migration monitoring, and complete
operational handoff.

This framework applies consistently across SQL Server, CockroachDB, and MongoDB, while addressing each
platform’s unique architectural differences and migration challenges. Each database section follows this process
with platform-specific guidance.

4

Migration from MS SQL Server

A - Assessment and architectural differences

Core architectural differences

•	 Platform architecture: SQL Server’s integrated Windows ecosystem versus PostgreSQL’s multi-platform
design. SQL Server’s single-vendor stack (SSMS, SSIS, SSRS) versus PostgreSQL’s ecosystem of
independent tools. T-SQL procedural language versus PL/pgSQL with different syntax and capabilities. SQL
Server Agent jobs versus external schedulers (pg_cron, cron, Airflow).

•	 Storage and performance: SQL Server’s clustered index tables versus PostgreSQL’s heap storage with
separate indexes. Columnstore indexes for analytics versus PostgreSQL’s different approaches (BRIN,
partitioning). In-memory OLTP tables versus PostgreSQL’s standard buffer cache model. Query optimizer
differences affecting execution plans and hints.

•	 Transaction and consistency models: SQL Server’s default READ COMMITTED with locking versus
PostgreSQL’s MVCC implementation. Snapshot isolation differences in implementation and performance
impact. Distributed transactions via MSDTC versus PostgreSQL’s 2PC with different tooling. Lock
escalation behavior versus PostgreSQL’s row-level locking approach.

•	 Data types and compatibility: - DATETIME/DATETIME2 → TIMESTAMP/TIMESTAMPTZ (time zone
handling differences) - NVARCHAR/NCHAR → VARCHAR/CHAR (PostgreSQL handles Unicode natively)
- UNIQUEIDENTIFIER → UUID - MONEY → NUMERIC/DECIMAL - BIT → BOOLEAN - IMAGE/TEXT →
BYTEA/TEXT (deprecated types)

•	 Programming and procedural differences: - T-SQL vs PL/pgSQL syntax variations - Error handling: TRY-
CATCH vs EXCEPTION blocks - Temporary tables: #temp vs CREATE TEMP TABLE - Table variables (@table)
have no direct equivalent - Dynamic SQL: sp_executesql vs EXECUTE

•	 System architecture components: - SQL Server Agent jobs → pg_cron or external schedulers - Service
Broker → pg_message_queue or external solutions - Linked Servers → Foreign Data Wrappers (FDW) -
Resource Governor → connection poolers with resource limits

Application challenges identification

•	 Connection and driver changes: Migration from ADO.NET SqlClient to Npgsql or EDB.NET Connector,
including connection string format changes and authentication method updates (Windows Auth to
certificate/LDAP)

•	 T-SQL to PostgreSQL syntax: Query refactoring for NOLOCK hints, TOP → LIMIT, ISNULL() →
COALESCE(), string concatenation operators, and built-in function replacements

•	 ORM and framework updates: Entity Framework provider changes, Dapper query adjustments, and LINQ
translation differences that may require code modifications

•	 Case sensitivity impact: SQL Server’s case-insensitive default vs PostgreSQL’s case-sensitive behavior
affecting object names, string comparisons, and query results

•	 Error handling patterns: Different SQLSTATE codes, exception hierarchies, and retry logic requirements for
deadlocks and timeouts

•	 Performance optimization: Query hint removal, parameter sniffing alternatives, and different approaches to
query plan management

5

Assessment methods

•	 AWS Schema Conversion Tool (SCT): This stands as the most comprehensive free assessment tool,
connecting directly to SQL Server instance to analyze schemas, stored procedures, and functions, then
generating detailed PDF assessment reports that show what percentage can be automatically converted
(typically 60%–80%) and effort estimates in hours for manual conversion work.

•	 ora2pg: Though primarily designed for Oracle, it can connect to SQL Server via FreeTDS/ODBC drivers to
produce HTML assessment reports with migration difficulty scores from A (simple) to E (difficult) and person-
day estimates, making it a viable free alternative despite requiring more setup effort.

•	 Pre-flight check tools

•	 pgloader --dry-run: This tests what will convert without actually migrating and shows which tables and
constraints will work and which will fail. Output can be saved as a text file to identify problem areas
before migration.

•	 EDB Migration Toolkit: It runs test migrations to identify conversion failures. The logs show exactly which
stored procedures and functions won’t convert and why. Use these errors to list items that need
manual fixes.

C - Conversion (schema and DDL)

Schema conversion approach

•	 Automated conversion tools: AWS SCT converts 60%–80% of schemas automatically, with detailed reports
showing manual work needed. EDB Migration Toolkit migrates schemas with built-in T-SQL compatibility
for EDB Postgres Advanced Server. pgLoader: This handles basic schema discovery via FreeTDS but offers
limited procedural code support. Ispirer SQLWays specializes in complex T-SQL pattern recognition and
procedural code translation.

•	 Manual conversion requirements: CLR assemblies require complete rewrite in PL/pgSQL or PostgreSQL
extensions. Service Broker queues need to be redesigned using LISTEN/NOTIFY or message queues.
Cross-database queries require Foreign Data Wrappers or schema consolidation. Extended stored
procedures have no equivalent and will need architectural redesign.

Key conversion challenges

•	 Data type mappings: DATETIME to TIMESTAMP with precision differences. NVARCHAR to VARCHAR
requires encoding verification. MONEY to NUMERIC(19,4). VARCHAR(MAX) to TEXT with different storage
behavior. Computed columns to generated columns (PostgreSQL 12+) or triggers.

•	 Identity and sequences: IDENTITY columns convert to SERIAL/IDENTITY with different sequence
management. SCOPE_IDENTITY() patterns need RETURNING clause or lastval(). RESEED operations
require manual sequence adjustments. Identity insert handling differs significantly.

•	 SQL Server–specific features: Filtered indexes become partial indexes with different optimizer rules.
Indexed views convert to materialized views with manual refresh. Table-valued functions convert to set-
returning functions. Temporal tables need triggers or extension-based solutions. Columnstore indexes have
no direct equivalent.

•	 Schema organization: SQL Server database becomes schema in PostgreSQL. Cross-database joins need
FDW or consolidation. Three-part naming (server.db.schema) requires refactoring. Linked servers convert to
Foreign Data Wrappers.

6

Conversion tools and workflow

•	 Recommended approach: Use AWS SCT for assessment and initial conversion. Apply EDB MTK for enterprises
needing T-SQL compatibility. Use pgLoader for simple table migrations. Deploy Ispirer for complex procedural
code. Create custom scripts for patterns not handled by tools.

•	 Conversion priority: Convert in order: tables/constraints → views → functions → stored procedures → triggers.
Test each layer before proceeding. Document T-SQL patterns that need application code changes.

T - Tooling and planning

Tool selection strategy

The choice of migration tool depends primarily on your database complexity. For straightforward migrations with
mainly tables and views, pgLoader provides a reliable open source option. When dealing with enterprise systems
containing T-SQL stored procedures and functions, EDB Migration Toolkit offers better compatibility features.
AWS environments benefit from the integrated SCT and DMS combination, while complex procedural logic often
requires commercial solutions such as Ispirer SQLWays.

Most successful migrations employ a toolchain approach: AWS SCT for initial assessment, followed by your chosen
migration tool for execution, with custom scripts filling any remaining gaps.

Migration planning framework

•	 Discovery and preparation phase: Start by inventorying all SQL Server components including Agent jobs,
SSIS packages, and linked servers. Establish performance baselines to measure migration success and
map your SQL Server security model to PostgreSQL equivalents. Create test environments that mirror your
production setup for validation before the actual migration.

•	 Execution strategy: Adopt a wave-based migration approach, moving from development to test, then
to noncritical systems before touching production. Each wave needs defined rollback procedures and
maintenance windows sized appropriately for your data volumes. Application cutover planning runs parallel to
database migration preparation.

•	 Validation framework: Build comprehensive validation covering schema completeness, data integrity through
row counts and checksums, application functionality testing, and performance benchmarking against your
baselines. Include disaster recovery testing to ensure that your new PostgreSQL environment meets business
continuity requirements.

Critical planning considerations

Experience shows that procedural code conversion typically takes two to three times initial estimates. Test with
production-scale data volumes to uncover performance issues early. Success depends on having application
teams ready for code changes, SQL Agent job replacements identified, and staff trained on PostgreSQL
operational differences.

7

I - Implementation (data and migration)

Migration strategy selection

•	 Big-bang migration: Complete database cutover during a maintenance window using EDB Migration Toolkit
or pgLoader. Best for smaller databases (<100GB) with acceptable downtime windows. Simpler to execute but
requires longer downtime.

•	 Trickle migration (CDC approach): Use EDB Replication Server for continuous synchronization between SQL
Server and PostgreSQL, maintaining both systems in parallel until cutover. Enables near-zero downtime for large
databases. Requires more complex setup but minimizes business disruption.

•	 Hybrid approach: Combine pgLoader for initial bulk load with CDC tools for incremental changes during testing
phase. Balances complexity with downtime requirements. Most practical for medium to large databases.

Implementation tools

•	 EDB Replication Server provides enterprise CDC with trigger-based or log-based replication, supporting
bidirectional sync for phased migrations. Ideal when downtime must be minimal.

•	 EDB Migration Toolkit executes offline migrations with integrated schema and data transfer, offering parallel
processing and progress monitoring. Included with EDB Postgres Advanced Server subscriptions.

•	 pgLoader delivers high-performance open source data loading with automatic retry mechanisms and error
handling. Excellent for initial loads with simple transformations using straightforward syntax: pgloader mssql://
source pgsql://target

Performance optimization techniques

•	 Pre-migration tuning: Temporarily disables the foreign key constraints and triggers during bulk loads. Increase
PostgreSQL memory parameters: maintenance_work_mem to 1-2GB, checkpoint_segments to 100+, and wal_
buffers to 16MB.

•	 During migration: Execute parallel loads across multiple tables simultaneously. Use PostgreSQL COPY command
for raw data insertion when possible. Split large tables into chunks for manageable processing.

•	 Post-migration: Reenable all constraints and triggers. Rebuild indexes with CONCURRENTLY option. Run
ANALYZE on all tables for query optimizer statistics. Validate data integrity before cutover.

O - Operation (monitoring, automation, observability)

Monitoring essentials

•	 Performance monitoring: Enable pg_stat_statements extension for query performance tracking, replacing
SQL Server’s Query Store functionality. Monitor connection pools through PgBouncer or Pgpool-II statistics
dashboards. Establish baseline metrics during migration to compare PostgreSQL performance against SQL Server
historical data.

•	 Key metrics to track: Focus on query response times, connection counts, replication lag, and transaction
rates. Configure PostgreSQL logging with log_min_duration_statement to capture slow queries. Monitor disk I/O
and memory usage patterns that differ from SQL Server behavior.

8

Automation framework

•	 Job scheduling: Replace SQL Server Agent with pg_cron for database tasks or external schedulers (Airflow,
cron) for complex workflows. Convert maintenance plans to PostgreSQL scripts scheduled through your
chosen automation tool.

•	 Backup automation: Implement pg_basebackup for base backups with WAL archiving for point-in-time
recovery. Consider Barman or pgBackRest for enterprise backup management with retention policies and
automated recovery testing.

•	 High availability: Configure streaming replication with automated failover using Patroni. This replaces SQL
Server Always On Availability Groups with PostgreSQL-native solutions.

Observability platform

•	 Metrics and alerting: Deploy Prometheus with Grafana for real-time metrics visualization, or use native cloud
monitoring (CloudWatch, Azure Monitor) for managed instances. Set alerts for connection saturation (>80%
of max_connections), replication lag (>10 seconds), and disk space (<20% free).

•	 Application integration: Implement application performance monitoring (APM) tools that understand
PostgreSQL. Track end-to-end transaction flows from application to database. Compare against SQL Server
SLAs to ensure that migration success meets business requirements.

N - Normalization and validation

Data validation strategy

•	 Row count verification: Compare table row counts between SQL Server and PostgreSQL as the primary
validation metric. For SQL Server, use COUNT(*) from system tables. For PostgreSQL, leverage pg_stat_user_
tables.n_live_tup for quick counts. Document any expected differences (system tables, excluded objects).

•	 Data integrity checks: Beyond counts, validate sample data from critical tables using checksums or hash
comparisons. Focus on financial data, date columns (time zone handling), and numeric precision that may
differ between platforms. For large tables, validate representative samples rather than full datasets.

Schema validation

•	 Object completeness: Verify that all database objects migrated successfully: tables, views, functions,
procedures, and triggers. Compare column counts, data types, and nullable settings between source and target.

•	 Constraint and index validation: Confirm that primary and foreign keys are active and enforced. Validate that
check constraints syntax translated correctly. Verify that indexes exist and match SQL Server covering indexes
where applicable. Check that sequence current values align with source IDENTITY columns.

Compliance and sign-off

•	 Critical checkpoints: Ensure that security permissions match business requirements, not necessarily SQL
Server’s model. Verify audit trail continuity if required for compliance. Confirm that encryption at rest and in
transit meets regulatory standards.

•	 Acceptance criteria: Define clear success metrics: 100% schema objects migrated, >99.9% data accuracy,
performance within 20% of baseline, all critical business functions tested. Create a formal sign-off checklist with
stakeholder approval requirements before cutover.

9

S - Switch and support

Go-live preparation

Conduct full cutover rehearsal in staging environment with documented timings. Prepare a rollback plan and final
data synchronization strategy.

Application cutover

•	 Final changes: Update connection strings and database drivers (SqlClient to Npgsql, JDBC updates). Fix any
remaining SQL syntax differences discovered in testing, especially error handling code.

•	 Cutover process: Set SQL Server to read-only, run final data sync, validate data, switch application
connections, monitor closely. Keep SQL Server available as an immediate rollback option for the first
48–72 hours.

Post-migration support

•	 Stabilization monitoring: Track application error logs, query performance against baselines, and connection
pool health. Focus on catching PostgreSQL-specific issues such as connection exhaustion or transaction
isolation differences.

•	 Support transition: Train operations team on PostgreSQL-specific tasks: backup/restore, performance
tuning, troubleshooting. Document key operational differences from SQL Server. Define escalation paths for
database versus application issues.

Success handoff

•	 Acceptance criteria: Zero critical errors, performance within 20% of baseline, all business processes
functional. Get formal sign-off before decommissioning SQL Server.

•	 Knowledge transfer: Deliver PostgreSQL runbooks, performance troubleshooting guide, and validated DR
procedures. Schedule 30-day and 90-day follow-ups for emerging issues.

10

Migration from CockroachDB

A - Assessment and architectural differences

Core architectural differences

•	 Distributed vs. centralized design: CockroachDB uses range-based data distribution with automatic
sharding across nodes, while PostgreSQL employs table-based storage on single nodes or primary/standby
configurations. CockroachDB’s built-in geo-partitioning requires manual implementation in PostgreSQL
using declarative partitioning or Citus extension. Moving from CockroachDB’s automatic load balancing to
PostgreSQL requires external tools such as HAProxy or PgBouncer.

•	 Transaction models: CockroachDB defaults to serializable isolation with distributed transactions using
two-phase commit (2PC), while PostgreSQL defaults to read committed with local transactions only.
CockroachDB requires NTP clock synchronization for distributed consistency, whereas PostgreSQL relies
on local system time. Applications need modification to handle PostgreSQL’s different isolation levels and lack
of automatic retry logic.

•	 SQL and feature compatibility/missing CockroachDB features: CockroachDB lacks stored procedures,
triggers, and custom data types that PostgreSQL supports extensively. Limited window function support
and no data-modifying CTEs (INSERT/Update/DELETE with RETURNING) require query rewrites.
CockroachDB’s connection multiplexing eliminates pooler needs, but PostgreSQL requires PgBouncer or
Pgpool-II for connection management.

•	 Data type considerations: CockroachDB recommends UUID primary keys for distribution, while PostgreSQL
traditionally uses SERIAL/BIGSERIAL. Both support JSONB but with different indexing strategies—
CockroachDB’s inverted indexes versus PostgreSQL’s GIN/GiST. PostgreSQL offers arrays, full-text search,
and custom types absent in CockroachDB, potentially simplifying some data models.

Application impact assessment

•	 Connection and retry logic: Applications built for CockroachDB include automatic retry logic for
serialization errors (40001). PostgreSQL requires different retry patterns for deadlocks (40P01) versus
serialization failures. Remove CockroachDB-specific retry annotations (@Retryable) and implement
PostgreSQL-appropriate error handling.

•	 Query pattern changes: Applications using follower reads for read scaling need refactoring to use
PostgreSQL read replicas with different connection strings. AS OF SYSTEM TIME queries require alternative
implementations using triggers and history tables or temporal tables extension. Geographic queries assuming
data locality need redesign for PostgreSQL’s centralized model.

•	 Driver and ORM modifications: Update connection strings from CockroachDB cluster endpoints to
PostgreSQL single-host or load-balanced endpoints. Modify ORMs expecting CockroachDB’s INSERT ... ON
CONFLICT behavior differences. Remove assumptions about automatic UUID generation and implement
PostgreSQL’s uuid-ossp or gen_random_uuid().

Assessment methods

•	 Schema and feature analysis: Export schemas using cockroach dump --dump-mode=schema and analyze
manually, since no automated tools exist for this migration path. Query crdb_internal system tables to identify
distributed features such as zone configurations and interleaved tables. Document changefeed usage that
needs replacement with PostgreSQL logical replication or CDC tools.

•	 Performance and workload assessment: Baseline CockroachDB metrics, including distributed query
performance and transaction retry rates. Identify queries leveraging follower reads and AS OF SYSTEM
TIME that need PostgreSQL alternatives. Evaluate whether single-node PostgreSQL can meet throughput
requirements without automatic sharding, considering read replicas or Citus if needed.

11

C - Conversion (schema and DDL)

Schema conversion approach

•	 Direct PostgreSQL compatibility: Since CockroachDB uses PostgreSQL wire protocol, basic tables, indexes,
and simple constraints transfer directly. Use pg_dump from CockroachDB and pg_restore to PostgreSQL for
compatible objects. This handles roughly 70%–80% of basic schema without modification.

•	 Manual conversion requirements: INTERLEAVE IN PARENT tables must be converted to standard foreign
key relationships, losing the co-location benefits. Hash-sharded indexes need redesigning as standard B-tree
indexes with potential application-level sharding. Zone configurations and geo-partitioning require PostgreSQL
partitioning with manual partition placement. Computed columns convert to generated columns (PostgreSQL
12+) or trigger-based solutions.

Key conversion challenges

•	 Primary key and distribution: CockroachDB’s UUID primary keys optimized for distribution may cause
performance issues in PostgreSQL’s B-tree indexes. Consider switching to SERIAL/BIGSERIAL or implementing
UUID v7 for better locality. Hash-sharded primary keys have no direct equivalent, requiring application-level
sharding logic or Citus extension.

•	 Index strategy changes: STORING clauses in indexes must convert to PostgreSQL’s INCLUDE syntax,
but performance characteristics differ. Inverted JSONB indexes become GIN indexes with different query
optimization patterns. Distributed index scans that were efficient in CockroachDB may require query rewrites
for PostgreSQL’s single-node execution.

•	 Lost distributed features: INTERLEAVE IN PARENT for co-location has no PostgreSQL equivalent, potentially
impacting the join performance. Zone configurations for data placement require manual partitioning and
tablespace management. Follower reads and AS OF SYSTEM TIME need application-level implementation using
read replicas and temporal tables.

Conversion tools and workflow

•	 Semiautomated approach: Use pg_dump --schema-only for initial export, expecting 20%–30% failure
rate on import. Create sed/awk scripts to bulk-convert known patterns: INTERLEAVE removal, STORING to
INCLUDE, computed column syntax. No dedicated tools exist for CockroachDB-specific conversions.

•	 Conversion steps: Export schema using cockroach dump or pg_dump. Run test import to identify all
incompatibilities. Fix systematically: Remove INTERLEAVE relationships first, convert indexes, and then handle
computed columns. Validate by comparing object counts and running sample queries from application.

T - Tooling and planning

Tool selection strategy

•	 Available migration tools: No dedicated tools exist for CockroachDB to PostgreSQL migration. Use cockroach
dump for accurate schema export, pg_dump/pg_restore for compatible objects, and pgloader for bulk data
transfer. Create custom scripts for INTERLEAVE tables and computed columns conversion.

•	 Recommended toolchain: Schema: cockroach dump → sed/awk scripts → pg_restore. Data: pgloader with error
handling → custom validation scripts. Plan 70% effort on application refactoring, 30% on database migration.

12

Migration planning framework

•	 Phase 1: Assessment (1–2 weeks): Inventory CockroachDB-specific features usage. Size PostgreSQL
infrastructure for total capacity. Identify application code requiring changes.

•	 Phase 2: Preparation (2–4 weeks): Set up PostgreSQL with PgBouncer and read replicas. Convert schemas
and test with sample data. Refactor application retry logic and connection handling.

•	 Phase 3: Execution (1–3 weeks): Migrate in waves: noncritical → read-heavy → core workloads. Run parallel
operations for 30-day rollback capability. Monitor single-node performance bottlenecks.

Critical planning considerations

•	 Complexity multipliers: Add 2x time for multiregion data, 3x for heavy INTERLEAVE usage, 2x for extensive
changefeeds. Simple migrations take 2–3 weeks; complex ones need 2–3 months.

•	 Risk mitigation: Test with production data volumes early. Document features lost in migration. Prepare
rollback procedures for each phase.

•	 Decision criteria: Proceed if accepting single-region limitations and single-node performance meets SLAs.
Reconsider whether requiring active-active multiregion or automatic sharding.

I - Implementation (data and migration)

Migration strategy selection

•	 Online migration (minimal downtime): Use logical replication via CockroachDB changefeeds to stream
changes to PostgreSQL. Requires custom change data capture handlers, since no direct CDC tools exist. It is
best for large databases requiring near-zero downtime but adds significant complexity.

•	 Offline migration (maintenance window): Execute full cutover using pgloader during planned downtime. This
is a simpler approach suitable for databases under 500GB with acceptable 2–6 hour maintenance windows,
and it is the most reliable for ensuring data consistency.

•	 Hybrid approach: Initial bulk load with pgloader, then use changefeeds for incremental updates during the
testing phase. This approach balances complexity with downtime requirements. It is recommended for most
migrations as it provides validation time before cutover.

Implementation tools

•	 pgloader configuration: Connect using PostgreSQL protocol: pgloader pgsql://user@
cockroachdb:26257/db pgsql://user@postgres:5432/db. Configure WITH options for batch size, worker
count, and error handling. Set on error resume next for handling conversion issues.

•	 CockroachDB changefeeds: Create changefeeds for CDC: CREATE CHANGEFEED FOR TABLE mytable
INTO 'webhook-https://[...]'. Requires custom webhook endpoint to translate changes to PostgreSQL.
Alternative: Use Kafka sink with Debezium PostgreSQL connector.

•	 Data validation tools: Use pg_comparator for row-level comparison between systems. Create custom
checksums using MD5 on sorted data for large tables. Monitor row counts continuously during migration.

13

Performance optimization techniques

•	 Premigration tuning: This disables PostgreSQL autovacuum during bulk loads. Increase maintenance_
work_mem to 2GB and checkpoint_segments to 256. Drop indexes and foreign keys; recreate after data
load. Set synchronous_commit = off temporarily.

•	 During migration: Use pgloader’s CONCURRENCY setting with 4–8 workers, based on CPU cores. Split large
tables into chunks using range queries on primary keys. Load independent tables in parallel using multiple
pgloader processes.

•	 Post-migration optimization: Reenable constraints and create indexes with the CONCURRENTLY option. Run
ANALYZE on all tables for statistics. Reset configuration parameters to production values. Validate query
performance against CockroachDB baselines.

O - Operation (monitoring, automation, observability)

Monitoring essentials

•	 Performance monitoring differences: Replace CockroachDB’s built-in distributed metrics with PostgreSQL-
focused monitoring. Enable pg_stat_statements for query analysis, replacing CockroachDB Console’s SQL
insights. Monitor single-node resource limits (CPU, memory, disk I/O) more closely since you lose distributed
load spreading. Track connection pool metrics through PgBouncer statistics.

•	 Key metrics transition: Shift focus from range metrics and leaseholder distribution to buffer cache hit ratio,
checkpoint frequency, and vacuum activity. Monitor replication lag for read replicas replacing follower
reads. Track transaction ID wraparound, which doesn’t exist in CockroachDB.

Automation framework

•	 Job migration strategy: CockroachDB’s built-in scheduled backups need replacement with pg_cron or
external schedulers (cron, Airflow). Convert CockroachDB backup schedules to pgBackRest or Barman
automated jobs. Implement custom health checks to replace CockroachDB’s automatic node
liveness detection.

•	 Operational automation: Set up Patroni for automatic failover, replacing CockroachDB’s built-in resilience.
Configure automated vacuum and analyze schedules based on table activity. Create scripts for partition
management, replacing CockroachDB’s automatic range splits.

Observability platform

•	 Metrics collection: Deploy Prometheus with postgres_exporter for metrics, replacing CockroachDB’s
Prometheus endpoint. Use Grafana dashboards designed for PostgreSQL instead of CockroachDB’s pre-
built ones. Configure log aggregation for PostgreSQL logs, which are more verbose than CockroachDB’s
structured logs.

•	 Alerting adjustments: Create alerts for PostgreSQL-specific issues: long-running transactions, table bloat,
approaching transaction ID wraparound. Remove CockroachDB-specific alerts for range unavailability, clock
skew, and node liveness. Set tighter thresholds for single-node resources, since there’s no
automatic redistribution.

14

N - Normalization and validation

Data validation strategy

•	 Row count verification: Compare table row counts between CockroachDB and PostgreSQL using system
tables. For CockroachDB, query crdb_internal.table_rows for approximate counts, or use SELECT
COUNT(*) for exact numbers. In PostgreSQL, use pg_stat_user_tables.n_live_tup for quick estimates or
actual counts for precision. Document expected differences from in-flight transactions during migration.

•	 Data integrity validation: Create checksums on sorted data subsets, since full table checksums may differ
due to internal storage differences. Focus on business-critical columns rather than system columns such
as crdb_internal_mvcc_timestamp. Validate JSONB data carefully, as internal ordering might differ between
systems. Compare sample rows for tables with complex data types.

Schema validation

•	 Object completeness: Verify that all tables migrated, but expect differences in system-generated names for
constraints and indexes. Confirm that foreign keys are enforced (CockroachDB may have had them disabled
for performance). Check that computed columns are converted correctly to generated columns or triggers.
Validate that zone configurations didn’t result in missing partitions.

•	 Feature compatibility check: Ensure that UUID columns maintained their values during migration. Verify
that timestamp precision matches, as CockroachDB uses microseconds by default. Confirm that sequence
values are set correctly for tables that switched from UUID to SERIAL. Check that partial indexes replacing
CockroachDB’s storing clauses work correctly.

Compliance and sign-off

•	 Performance baseline comparison: Document that single-node PostgreSQL latencies may differ from
distributed CockroachDB patterns. Accept different query plans as normal due to different optimizers. Set
realistic expectations that some queries may be faster, others slower.

•	 Acceptance criteria: Define success as 100% data migrated, critical business functions operational, and
performance within acceptable SLAs (may differ from CockroachDB). Create formal sign-off checklists
acknowledging that lost distributed features are acceptable. Include verification that backup/restore
procedures work in the PostgreSQL environment.

S - Switch and support

Go-live preparation

•	 Cutover rehearsal: Execute full migration in staging with production data volumes. Test application behavior
with PostgreSQL’s different isolation levels and without retry logic. Document exact timings and validate that
rollback procedures work.

Application cutover

•	 Connection updates: Replace CockroachDB cluster URLs (port 26257) with PostgreSQL endpoint (port
5432). Remove CockroachDB-specific parameters and retry decorators. Configure connection pooling for
single-node architecture. Update error handling for PostgreSQL error codes.

•	 Cutover execution: Stop writes to CockroachDB, run final data sync, validate critical data, and switch
application connections. Keep CockroachDB running for 7–14 days as a rollback option.

15

Post-migration support

•	 Stabilization monitoring: Watch for connection exhaustion without multiplexing, single-node resource
spikes, vacuum/bloat issues, and different lock contention patterns. Focus on issues unique to moving from
distributed to single-node architecture.

•	 Knowledge transfer: Train team on PostgreSQL vacuum vs. CockroachDB garbage collection, manual
failover vs. automatic resilience, and traditional backups vs. distributed snapshots. Document operational
differences in runbooks.

Success handoff

•	 Acceptance criteria: Stable operation for 14 days, performance within SLAs, all critical processes functional.
Document new performance baselines and archive CockroachDB data before decommissioning.

•	 Long-term planning: Schedule PostgreSQL performance tuning training. Plan for major version upgrades and
potential scaling strategies if approaching single-node limits.

16

Migration from MongoDB

A - Assessment and architectural differences

Core architectural differences

•	 Document vs. relational model: MongoDB’s schema-less documents versus PostgreSQL’s structured
tables with defined schemas. Nested documents require normalization or JSONB storage. Dynamic fields
need predefined columns or EAV patterns. Embedded arrays must become separate tables or JSONB.

•	 Scalability and distribution: MongoDB’s automatic sharding versus PostgreSQL’s manual partitioning or
Citus extension. Replica sets with automatic failover versus PostgreSQL requiring Patroni/repmgr. Read
preferences need explicit read-replica routing in PostgreSQL.

•	 Transaction and consistency: MongoDB’s document-level atomicity versus PostgreSQL’s full ACID.
Eventual consistency options versus PostgreSQL’s strong consistency. Change streams need logical
replication or LISTEN/NOTIFY. Aggregation pipelines require SQL with CTEs and window functions.

Application impact assessment

•	 Data access changes: Replace MongoDB drivers with PostgreSQL equivalents. BSON ObjectId needs UUID
or SERIAL replacement. Dot notation queries require JSONB operators or schema redesign. Bulk operations
have different syntax and performance characteristics.

•	 Query pattern modifications: find() queries need SQL SELECT or JSONB conversion. Aggregation
pipelines become complex SQL with JOINs/CTEs. Geospatial queries require PostGIS. Text search moves
from $text to PostgreSQL full-text search.

•	 Business logic adjustments: Remove replica set retry logic. Modify sharding key distribution to partitioning.
Replace GridFS with Large Objects or external storage. Update change stream listeners to triggers or logical
replication.

Assessment methods

•	 Schema discovery: Use MongoDB Compass for schema analysis and field statistics. Run variety.js to
identify all fields and data types. Export with mongoexport --jsonArray for structure analysis.

•	 Workload analysis: Profile with db.setProfilingLevel() for query patterns. Analyze explain() plans for index
usage. Monitor OpLog for writing volumes and patterns.

•	 Complexity evaluation: Count collections with inconsistent schemas. Measure document nesting depth for
JSONB vs. relational decisions. Assess aggregation pipeline complexity for SQL conversion effort. Calculate
GridFS data volume for storage planning.

C - Conversion (schema and DDL)

Schema conversion approach

•	 Document to relational mapping: Flat documents map directly to table rows with columns for each field.
Nested objects become separate tables with foreign keys or JSONB columns based on query patterns.
Arrays convert to one-to-many relationships or PostgreSQL arrays for simple types. Mixed-type fields
require JSONB or separate columns per type.

•	 Schema design decisions: Choose normalized tables for frequently queried, consistent structures. Use
JSONB for variable schemas or deeply nested data. Apply a hybrid approach with core fields as columns,
variable data in JSONB. Consider table inheritance for polymorphic MongoDB collections.

17

Key conversion challenges

•	 Identifier management: MongoDB ObjectId (12-byte) doesn’t map directly to PostgreSQL types. Use UUID
for distributed ID generation or BIGSERIAL for simpler cases. Maintain _id mapping table during migration
for reference integrity. Handle compound _id fields as composite primary keys.

•	 Data type conversions: ISODate converts to TIMESTAMP WITH TIME ZONE. NumberLong maps to BIGINT,
NumberDecimal to NUMERIC. Binary data moves from BSON to BYTEA. Regular expressions stored as
strings need application-level handling. The undefined/null distinction is lost in PostgreSQL.

•	 Index translations: Compound indexes map directly, but with different optimizer behavior. Multikey indexes
on arrays need GIN indexes or normalization. 2dsphere/2d indexes require PostGIS geography/geometry
types. Text indexes convert to GIN indexes with tsvector. TTL indexes need pg_cron with DELETE jobs.

Conversion tools and workflow

•	 Available migration tools: mongo2pg provides basic schema inference and data migration. pgloader
supports MongoDB with automatic schema detection via BSON inspection. Custom scripts using
mongoexport/COPY provide better control. ETL tools (Talend, Pentaho) are suitable for complex
transformations.

•	 Conversion strategy: Analyze collections with MongoDB Compass for schema patterns. Generate DDL using
automated tools or manual design based on patterns. Create PostgreSQL schemas with JSONB fallback for
unmapped fields. Build indexes based on MongoDB query patterns. Validate that foreign key relationships
match MongoDB references.

T - Tooling and planning

Tool selection strategy

•	 Available tools: Use pgloader with MongoDB support for automated schema inference and data migration;
mongo2pg for basic collection-to-table conversions. Custom scripts using mongoexport/COPY work for
complex transformations. Commercial ETL (FiveTran, Stitch) are good for managed migrations with CDC.

•	 Selection criteria: Use pgloader for consistent schemas, custom scripts for complex transformations or
GridFS. Plan 60% effort on schema design, 40% on data migration.

Migration planning framework

•	 Phase 1: Discovery (1–2 weeks): Profile schemas with Compass and variety.js. Identify normalization vs.
JSONB storage needs. Map aggregation pipelines to SQL. Size PostgreSQL infrastructure.

•	 Phase 2: Design (2–3 weeks): Create a PostgreSQL schema with tables/JSONB mix. Design indexes from
query patterns. Plan a GridFS migration strategy. Build transformation scripts.

•	 Phase 3: Migration (1–4 weeks): Migrate by collection priority. Run parallel for independent collections.
Validate after each batch. Test application before cutover.

Critical planning considerations

•	 Complexity multipliers: Add 2x time for inconsistent schemas, 3x for heavy aggregations, 2x for sharded
clusters. Simple migrations: 2–4 weeks. Complex migrations: 2–3 months.

•	 Risk mitigation: Test JSONB vs. normalized performance early. Validate document size limits (PostgreSQL
1GB vs MongoDB 16MB). Plan for missing features (auto-sharding, change streams).

•	 Go/no-go criteria: Proceed if the relational model is acceptable and single-node performance is sufficient.
Reconsider whether the situation needs flexible schema evolution or automatic sharding.

18

I - Implementation (data and migration)

Migration strategy selection

•	 Offline migration (full cutover): Export with mongodump (BSON) or mongoexport (JSON/CSV) and import
via PostgreSQL COPY or pgloader. This works best for databases under 100GB with an acceptable downtime
window. It’s the simplest approach, with guaranteed consistency.

•	 Online migration (CDC approach): Use MongoDB change streams (requires replica set/sharded cluster)
with custom connector to PostgreSQL. Alternatively, use Debezium MongoDB connector with Kafka to
PostgreSQL sink. Enables near-zero downtime for large databases.

•	 Hybrid approach: Initial bulk load with pgloader, then change streams or Debezium for incremental updates.
Recommended for most migrations, balancing complexity with downtime. Provides a validation period before
cutover.

Implementation tools

•	 pgloader configuration (v3.6+): Connect using pgloader mongodb://user:pass@host:27017/db
postgresql://user:pass@host:5432/db. This supports automatic schema detection from MongoDB 4.0+.
Configure WITH batch rows = 10000, batch size = 500MB for optimal performance. Use MATERIALIZE
VIEWS for complex transformations.

•	 mongodump/pg_restore method: Export BSON: mongodump --db=mydb --collection=mycoll.
Transform using Python with pymongo and psycopg2. Use PostgreSQL 14+ COPY FROM JSON for direct
JSON import. Leverage \copy with FORMAT csv for preprocessed data.

•	 Change streams with PostgreSQL: 14+ MongoDB 4.0+ change streams with fullDocument option for
complete documents. Use logical replication in PostgreSQL for downstream processing. Consider pg_
partman for time-based partitioning of streamed data. Handle idempotency with INSERT ... ON CONFLICT.

Performance optimization techniques

•	 Premigration tuning (PostgreSQL 15+): Use maintenance_work_mem = 4GB on modern systems. Set max_
wal_size = 10GB for bulk loads. Enable wal_compression = on to reduce I/O. Consider shared_buffers
= 25% of RAM for a dedicated migration server.

•	 During migration: Use MongoDB $sample for test migrations with representative data. Leverage PostgreSQL
14+ COPY FREEZE for faster loads into new tables. Enable parallel workers: max_parallel_maintenance_
workers = 4. Use table partitioning for collections greater than 100GB.

•	 Post-migration optimization: Use PostgreSQL 15+ MERGE command for upserts from change streams. Run
VACUUM ANALYZE with parallel workers. Enable pg_stat_statements for query performance comparison.
Consider BRIN indexes for time-series data from MongoDB.

O - Operation (monitoring, automation, observability)

Monitoring essentials

•	 Performance monitoring shift: Replace MongoDB’s db.currentOp() and profiler with PostgreSQL’s pg_
stat_activity and pg_stat_statements. Monitor JSONB query performance, which differs from MongoDB
document queries. Track vacuum activity and table bloat, concepts absent in MongoDB. Watch connection
pool behavior, since MongoDB connection multiplexing is lost.

•	 Key metrics changes: Shift from MongoDB’s replication lag and oplog window to PostgreSQL’s WAL lag
and replication slots. Monitor TOAST table usage for large JSONB documents replacing GridFS. Track
index bloat and sequential scans on JSONB fields. Replace MongoDB lock percentage with PostgreSQL
lock wait events.

19

Automation framework

•	 Job migration: MongoDB scheduled tasks (Atlas scheduled triggers) need pg_cron or external schedulers.
Replace TTL indexes with pg_cron DELETE jobs or partitioning with retention. Convert MongoDB
aggregation pipelines in cron to PostgreSQL materialized view refreshes. Implement automatic VACUUM/
ANALYZE schedules for high-write tables.

•	 Operational automation: Replace MongoDB’s automatic sharding with manual partition management using
pg_partman. Configure pgBackRest or Barman replacing MongoDB’s point-in-time recovery. Set up Patroni
for automatic failover versus MongoDB’s replica set elections. Create JSONB validation triggers, replacing
MongoDB schema validation.

Observability platform

•	 Metrics collection: Deploy postgres_exporter with custom queries for JSONB metrics. Use pg_stat_monitor
(Percona) for better query analysis than MongoDB’s profiler. Configure pgBadger for log analysis, replacing
MongoDB’s log parsing. Monitor autovacuum effectiveness with no MongoDB equivalent.

•	 Alerting adjustments: Create alerts for JSONB query slowness and GIN index bloat. Monitor transaction
ID wraparound risk, not applicable in MongoDB. Alert on replication slot lag, replacing oplog size monitoring.
Track connection exhaustion without MongoDB’s connection multiplexing. Set thresholds for table bloat
percentage unique to PostgreSQL.

N - Normalization and validation

Data validation strategy

•	 Document count verification: Compare MongoDB’s db.collection.countDocuments() with PostgreSQL’s
SELECT COUNT(*). Account for filtered migrations in which not all documents were migrated. Validate that
collections split into multiple PostgreSQL tables match total counts. Document excluded documents (e.g.,
those with null required fields).

•	 Data integrity validation: Verify that ObjectId to UUID/SERIAL mappings maintained referential integrity.
Compare sample documents using MongoDB’s findOne() with PostgreSQL JSONB queries. Validate that
nested arrays properly converted to related tables or PostgreSQL arrays. Check that date fields preserved
timezone information during migration.

Schema validation

•	 Structure verification: Confirm that all MongoDB collections mapped to PostgreSQL tables or JSONB
columns. Verify that indexes translated appropriately: compound, multikey, text, and geospatial. Validate that
unique constraints from MongoDB unique indexes are enforced. Check foreign keys created for previously
embedded document relationships.

•	 Data type accuracy: Verify that NumberDecimal preserved precision in NUMERIC columns. Confirm that
Binary data is correctly stored in BYTEA. Validate null vs undefined handling (PostgreSQL only has NULL).
Check that mixed-type fields are properly stored in JSONB or separate columns.

Compliance and sign-off

•	 Query performance validation: Compare MongoDB aggregation pipeline execution times with SQL
equivalents. Document that JSONB queries may differ from native MongoDB performance. Validate that full-
text search results match between MongoDB $text and PostgreSQL FTS. Verify that geospatial queries
return the same results in PostGIS.

•	 Acceptance criteria: Define success as 100% critical data migrated, referential integrity maintained, and
application queries functioning. Document performance differences as new baselines (some queries faster,
others slower). Verify that backup/restore procedures work with PostgreSQL’s different approach. Get sign-
off acknowledging that loss of MongoDB-specific features (auto-sharding, change streams) is acceptable.

© EnterpriseDB Corporation 2026. All rights reserved

About EDB Postgres AI
EDB Postgres AI is the first open, enterprise-grade sovereign data and AI platform, with a secure, compliant, and
fully scalable environment, on premises and across clouds. Supported by a global partner network, EDB Postgres AI
unifies transactional, analytical, and AI workloads, enabling organizations to operationalize their data and LLMs where,
when, and how they need them.

S - Switch and support

Go-live preparation

•	 Cutover rehearsal: Execute full migration in staging with production data volume. Test JSONB queries versus
MongoDB operations. Validate connection pooling without MongoDB’s multiplexing. Document migration
timings.

Application cutover

•	 Connection updates: Replace MongoDB URIs (mongodb://) with PostgreSQL (postgresql://). Switch
from MongoDB drivers to psycopg2/node-postgres. Remove MongoDB-specific options (readPreference,
writeConcern). Configure PgBouncer for connection pooling.

•	 Cutover execution: Stop MongoDB writes, run final sync, validate critical data, switch connections. Keep
MongoDB running for a 7–14 day rollback window.

Post-migration support

•	 Stabilization monitoring: Watch for JSONB query performance issues, connection pool exhaustion,
vacuum lag on heavy-update tables, and lock contention on JSONB documents. Focus on issues unique to
PostgreSQL’s different architecture.

•	 Knowledge transfer: Train team on JSONB operators versus MongoDB queries, vacuum/analyze concepts,
and index maintenance differences. Document troubleshooting procedures for JSONB performance issues.

Success handoff

•	 Acceptance criteria: Stable operation for 14 days, all features working, performance within SLAs. Document
new performance baselines and get stakeholder sign-off.

•	 Long-term planning: Schedule JSONB optimization training. Plan potential normalization of heavily queried
JSONB. Consider partitioning for large tables. Document path to relational model if needed.

Raghavendra Rao is a senior practice leader in global migration and an accomplished
database professional with more than two decades of experience across enterprise
and open source platforms. A passionate community contributor, he shares his
expertise through blogging, presentations, and training, drawing inspiration from the
global PostgreSQL community.

About the author

Connect on LinkedIn

Raghavendra Rao
Senior Practice Leader, Global Migrations, EDB

https://www.linkedin.com/in/raghavendra-rao-328495b7/

	Objective
	Introduction to non-Oracle migrations
	Migration approach framework
	Migration from MS SQL Server
	A - Assessment and architectural differences
	C - Conversion (schema and DDL)
	T - Tooling and planning
	I - Implementation (data and migration)
	O - Operation (monitoring, automation, observability)
	N - Normalization and validation
	S - Switch and support

	Migration from CockroachDB
	A - Assessment and architectural differences
	C - Conversion (schema and DDL)
	T - Tooling and planning
	I - Implementation (data and migration)
	O - Operation (monitoring, automation, observability)
	N - Normalization and validation
	S - Switch and support

	Migration from MongoDB
	A - Assessment and architectural differences
	C - Conversion (schema and DDL)
	T - Tooling and planning
	I - Implementation (data and migration)
	O - Operation (monitoring, automation, observability)
	N - Normalization and validation
	S - Switch and support

	About the author

