for DevOps ostgres

Nick lvanov

,bﬂ‘ - :i"'-’::" = et
L™ -
.
enterprisedb.com gt P ”
p v 2

https://www.enterprisedb.com

Table of Contents
Postgresina DevOps context.......n..

Automated provisioning and configuration

Trusted Postgres Architect

Cloud-native Postgres

Schema and code management.....

Automated testing

Continuous deployment for Postgres........

Blue/green deployment

Canary deployment

Monitoring and observability ...

Performance optimization

Proactive issue detection

Faster feedback loop.

Resource management and cost control

EDB monitoring tools

Postgres Enterprise Manager

Prometheus and Grafana integration

EDB Postgres Al Hybrid Manager
OpenTelemetry

Appendix |. Example TPA configuration fil€........eeeeeeseeesseessseessssessseessssese

Appendix Il. Important monitoring metrics
Server events

Operating system

Application behavior.
Replication performance

Vacuum performance

“\. EDB)
O POSTGRES /1

Postgres in a DevOps context

The term DevOps is a portmanteau of development and operations. It describes a methodology that bridges the
gap between software development and IT operations teams, aiming to make organizations more agile, shorten
the system development life cycle (SDLC), and provide continuous delivery of high-quality software with maximum
consistency and reliability.

The DevOps framework relies heavily on specific practices and tools:

« Continuous integration and continuous delivery (Cl/CD) are two related concepts, often mentioned
together, that define the rapid deployment of software and frequent system update cycles to accommodate
changing business demands and enable constant improvement of user experience.

- Automation is a central focus for DevOps engineers and site reliability engineers. Reducing the number of
manual steps in software testing and deployment relieves engineers from mundane tasks, improves software
quality, and ensures repeatable execution of deployment and infrastructure management tasks.

- Infrastructure as code (IaC) is a principle that involves managing infrastructure using code (e.g., using
tools such as Terraform or Ansible). laC enables automated and repeatable deployments, ensuring that
development, testing, and production environments look alike.

* Observability and monitoring allow DevOps teams to gain visibility into performance, health, and cost of
systems. Observability provides valuable and contextual insights at every phase of the software lifecycle,
feeding these data back to the developers. Reliable and configurable monitoring tools help engineers react to
the changes in system status while avoiding being overwhelmed by unnecessary alerts.

EnterpriseDB (EDB) as a company embraces the DevOps principles, both as the developer of software that is used
in critically important systems by millions of users around the world and as the provider of tools that enable users to
practice DevOps in their environments when it comes to deploying and managing Postgres and related tools.

CloudNativePG™ and two EDB products that are built on the same foundation, EDB Postgres Al for CloudNativePG
Cluster and EDB Postgres Al for CloudNativePG Global Cluster, are mature Kubernetes operators. They allow you
to use a declarative approach to designing highly available Postgres database clusters that seamlessly integrate
with the same CI/CD pipelines you use to deploy and manage other applications, making the database a first-class
citizen in your DevOps processes.

EDB maintains Trusted Postgres Architect, an Ansible-based orchestration tool that deploys Postgres clusters
according to EDB’s best practices and recommendations. It extends the same declarative, infrastructure-as-code
approach to bare metal servers, virtual machines, cloud-based compute resources, and containers.

It is not surprising, then, that in 2024, EDB Postgres Al won that year’s DevOps Dozen Award in the Best DevOps
for DataOps/Database Solution category.

Automated provisioning and configuration

Trusted Postgres Architect

Trusted Postgres Architect, or TPA, is an Ansible-based automation tool for deploying highly available Postgres
clusters that follow proven architecture patterns. It embodies EDB’s best practices and recommendations, derived
from years of experience implementing and supporting Postgres database systems. TPA is used internally to
facilitate automated testing. EDB professional services consultants and customers alike also use it externally to
ensure consistent deployment of Postgres clusters across development, test, and production environments, making
the tool a core component of DevOps practices for Postgres.

TPA core functionality and design principles include:

» Orchestration and automation: TPA uses Ansible, a widely adopted, powerful, and flexible automation
platform that orchestrates deployment and configuration of multiple servers consistently.

EDB

O POSTGRES /1 3

- Declarative configuration: TPA operates using a declarative configuration mechanism. It is driven by a single
YAML configuration file that describes the desired cluster architecture and configuration parameters. TPA can
help the user create a basic configuration defined with a few command-line arguments; the configuration can
then be customized as necessary.

- Deployment stages: TPA operates in four distinct stages to bring up a cluster: configuration generation,
provisioning, deployment, and testing.

« Provisioning: TPA can provision AWS EC2 instances and Docker containers, or deploy to existing servers
and virtual machines.

- Deployment: The deployment stage installs and configures the necessary software, including Postgres,
and associated components (such as EDB Postgres Distributed, Barman, PgBouncer, or EDB Failover
Manager). It also configures the operating system (e.g., kernel settings, users, log rotation).

- Ildempotency: The provisioning, deployment, and testing stages are designed to be idempotent. If the process
is rerun and nothing has changed in the configuration or on the instances, no action will be performed. If
changes were made to the configuration file, TPA safely deploys those changes.

« Cluster management: Once deployed, TPA provides convenient cluster management functions, including
configuration changes, switchover, and zero-downtime minor version upgrades of all software components.

« Extensibility: TPA is extensible through Ansible, allowing users to write custom commands, custom tests, and
hook scripts that are invoked during various stages of deployment.

Postgres instances deployed with the help of TPA are automatically configured based on the EDB experience
and industry best practices, taking into account the available server hardware resources and cluster architecture.
This primarily applies to the Postgres configuration parameters in the postgresql.conf file and the host-based
authentication properties in pg_hba.conf. Users can customize the database cluster configuration by supplying
the desired values in the TPA configuration manifest.

Cloud-native Postgres

Cloud-native Postgres is the embodiment of DevOps culture —it follows the microservices architecture pattern and
relies on Kubernetes container management and orchestration mechanisms to achieve database cluster scalability
and availability goals. It allows application developers to accelerate delivery and adapt to continuous change. All
cloud-native Postgres variants implement Kubernetes operators that allow users to deploy and maintain Postgres
clusters in various architecture patterns using a declarative, infrastructure-as-code approach. All aspects of a
database cluster can be defined in the deployment manifest: topology, replication configuration and consistency
settings, database configuration parameters, backup schedule, storage and network characteristics, and so on.
The manifest can be maintained in a source code repository integrated with a CI/CD pipeline; any change in the
manifest can trigger automatic deployment of the new configuration.

Cloud-native Postgres offers users these benefits:

- Automatic scaling and elasticity: Resources can be configured to automatically scale up or down based on
demand, optimizing performance and cost efficiency.

- Reduced operational overhead: Routine maintenance tasks such as patching, backups, and updates can be
defined declaratively and performed automatically by the Kubernetes operator.

« High availability: Built-in high availability configurations, such as multi-zone replication and automatic failover,
ensure minimal downtime.

- Observability: Monitoring and logging tools are built in, allowing easy integration with cloud-native monitoring
solutions (including CloudWatch, Azure Monitor, Prometheus, and Grafana).

- CI/CD integration: Easy integration with continuous integration and continuous deployment pipelines
supports agile development and business practices.

- Advanced deployment methodologies: These support sophisticated DevOps practices for application
updates, such as blue-green deployments, canary releases, and rolling upgrades.

EDB

O POSTGRES /1 4

Schema and code management

Database migration tools enforce a controlled, versioned, and repeatable approach to database evolution, treating
the schema as part of application code. They are essential for managing and automating PostgreSQL schema
changes across different environments (development, staging, production) in a Cl/CD process that is important to
the users following DevOps practices.

Using schema migration tools offers the following benefits:

« Consistency of changes is guaranteed in all environments (development, test, production); the databases
have the exact same schema structure, reducing “works on my machine” issues.

« Version control supports the “infrastructure as code” principle. The migration scripts are committed
alongside application code in the source control systems, providing a review and approval workflow and a
complete history of the database schema’s evolution.

- Automated CI/CD pipelines natively incorporate schema changes, running the corresponding migration or
update commands after the application is built.

- Safe evolution of schema artifacts is ensured by the immutability of each migration file. Once the change
is applied, a new script must be created for every subsequent change, forcing a clear, auditable timeline of
schema modifications.

There are many schema migration tools that natively support Postgres. The alternatives often fall into categories
based on their primary approach: versioned vs. declarative.

Version-based solutions include Flyway, Liquibase, pgroll, and others; they manage changes via a sequence of
numbered or named scripts that implement the necessary modifications or roll them back.

Other tools, such as Atlas or pgschema, take the declarative approach. They let users define the final, desired state
of the database schema, often in a simple language such as HCL or a set of SQL DDL files. The tool handles the
tasks of performing a “diff” between the desired state and the actual database state, then automatically generates
the safe, incremental SQL migration steps needed to bridge the gap. This approach significantly reduces manual
effort and can help detect destructive changes before they are applied.

Automated testing

Integrating database schema evolution into the Cl pipeline is incomplete without provisions for automated testing.
Database test automation solves two critical problems:

» Ensuring data integrity and schema consistency by continuously validating all database constraints and
applying changes consistently across all environments

- Validating application logic embedded in the database objects, such as functions, stored procedures, triggers,
and views

Users should set up temporary, disposable database instances for the purposes of automated testing. Running
tests in shared environments or production instances is never acceptable. Container-based instances are ideal for
this purpose.

Automated tests use the schema migration tools discussed previously to set up versioned database schemas and
populate them with predefined test data to ensure deterministic results.
Two types of automated tests can be integrated into the Cl pipelines:

« Unit tests (logic verification): These focus on individual database objects, isolating their logic.

« What they test: Stored procedures, functions, and complex triggers.

EDB

O POSTGRES /1 5

* How they work:
o Arrange (setup): Insert specific, minimal seed data directly into the necessary tables.
o Act (execute): Call the stored procedure or function being tested.

o Assert (verify): Check the resulting state of the database or the return value of the function against the
expected result.

« Tools: PostgreSQL-native testing framework pgTap allows users to write unit tests directly in SQL, which
are then run by the ClI pipeline.

- Integration tests (application stack): These tests verify how the application code interacts with the
database.

« What they test: ORM (object-relational mapping) queries, application service layers, transaction
boundaries, and complex SQL generated by the application.

* How they work:

o Start: The Cl pipeline starts both the database container and the application server (e.g., a Spring Boot
or Node.js service).

o Execute: The application’s test suite calls the service endpoints or business logic, which in turn
executes database commands.

o Assert: The test verifies that the final outcome (the data stored in the database, the API response, etc.)
is correct.

Some of the challenges inherent in automated database testing, as well as the approaches that help mitigate them,
are shown in the following table:

Challenge Mitigation

Test data management Use fixtures: Develop versioned data migration scripts (separate from schema
migrations) to populate reference data, lookups, and minimal test data required
for logic execution.

Speed and performance Limit scope: Use in-memory databases (if applicable) for application unit tests;
for full database tests, use small, highly optimized data fixtures to minimize
setup and teardown time.

State consistency Transactional tests: Ensure that each test runs within its own transaction. The
transaction should be rolled back at the end of the test, guaranteeing that the
next test starts with the same clean, migrated state.

Tooling fragmentation Standardize: Choose a migration tool and a testing framework that can be
easily invoked via command-line interface (CLI) commands within your ClI script
(e.g., Jenkins, GitHub Actions, GitLab CI).

EDB

O POSTGRES /1 6

Continuous deployment for Postgres

As discussed earlier, deployment automation and integration features of EDB Postgres Al enables users to
implement continuous deployment. However, this practice comes with its own set of challenges:

- Software release velocity: DevOps teams are pressured by the CI/CD model to deploy software changes
quickly. Companies aim to release significant changes every two weeks or more frequently, instead of
releasing yearly.

» Risk of instability: While developers are under constant pressure to create new features, every change can
potentially break the application in production. The DevOps team is responsible for successfully getting these
features to customers while having the capability to roll back changes if the application falters.

» Need for zero-downtime: Implementing continuous deployment necessitates advanced techniques to ensure
the application availability, such as zero-downtime deployment techniques for schema changes and version
upgrades, or sophisticated strategies such as blue-green deployments and canary releases.

EDB Postgres Al is well positioned to help developers address these challenges. Automation tools and declarative
database infrastructure definitions enable rapid, repeatable deployment.

Rich replication features inherent in Postgres allow users to set up multi-node database clusters that allow minor
version upgrades of the operating system, database software, and custom applications in a rolling fashion, without
incurring downtime. Replicas are upgraded first, then one of the replicas is promoted to the primary role, and the
remaining cluster node is finally upgraded.

EDB Postgres Distributed (PGD) supports even more sophisticated upgrade procedures, allowing major database
software version upgrades, as well as blue/green and canary deployments while the database cluster remains
operational to serve client workloads.

Blue/green deployment

The term blue/green deployment refers to a software implementation technique that relies on the presence of
two identical—in terms of the infrastructure capacity—production environments, only one of which is “live” and
serves the application workload at any given time. The “blue” environment is the current production environment.
The “green” environment is the future production environment that contains a new version of the application or
the database; it is where the deployment, configuration, and acceptance testing are performed without affecting
live users. Once the tests are successfully completed, application traffic is redirected to the blue environment and
begins processing the workload.

To use this technique, it is necessary to set up replication of data from green to blue while the configuration and
testing in the blue environment is ongoing, to ensure that both databases are in sync up to the moment of the blue
system promotion. At this point, replication must be enabled in the opposite direction, from blue to green, to allow
rollback without data loss if any major issues or bugs are discovered shortly after promotion.

Canary deployment

The so-called “canary deployment” techniques can be more complicated, as they entail simultaneously maintaining
the old and new versions of the database and applications, allowing a subset of users to access the new version
for testing while maintaining the original version for the rest. This limits the potential impact of the new version to a
small group of early adopters or beta testers. However, this means that the data are being simultaneously modified
on both systems, requiring bidirectional replication between them and robust conflict avoidance and resolution
capabilities.

Under this methodology the volume of application transactions is gradually shifted from the current database
system to its new version, while functional and performance tests are conducted. Finally, when 100% of the
application traffic is handled by the new system, the old servers can be decommissioned.

EDB

O POSTGRES /1 7

EDB Postgres Distributed offers features allowing users to perform canary deployments across PGD clusters
without incurring any downtime:

- Multidirectional replication: PGD uses logical replication, asynchronous by default, to replicate changes to
data, schemas, and database configuration parameters between all nodes in the cluster. All nodes are active
simultaneously and can process write as well as read operations.

- Node groups: Cluster nodes are organized into groups that manage themselves independently of each other.
Each group can have a leader that handles all read/write connections within the group, minimizing the risk of
data conflicts.

- Replication sets: These allow you to manage which tables are replicated to which nodes, helping with
geographic segregation of data and isolating incompatible database objects between the schema versions.

» Conflict resolution: PGD has an extensive set of conflict resolution rules, allowing you to fine-tune how
incompatible changes occurring on multiple nodes simultaneously should be handled. Users can also define
stream triggers to implement more complex conflict resolution rules that help deal with small schema
differences in the old and new database versions.

Of course, setting up a PGD cluster for canary deployments can be automated using TPA to ensure consistent
configuration and reduce the risk of errors.

Monitoring and observability

Monitoring of the deployed Postgres databases is important in the DevOps context as it enables users to reach
the key framework goals: reliability, performance, and rapid feedback. Monitoring provides the necessary visibility
to ensure that the database, a critical application component, is healthy and operating optimally throughout the
development, testing, and production lifecycle.

The list of suggested metrics to monitor is presented in Appendix Il.

Monitoring in the following key areas should be established:

Performance optimization

Slow queries are exposed by the pg_stat_statements module, which is recommended to be set up by default in all
Postgres instances. Identifying slow queries early in the development cycle allows engineers to promptly address
potential issues, rewrite queries, or modify the database model as necessary.

EDB Postgres Al platform provides additional features for slow query monitoring, maintaining query performance
history, identifying execution plan drift, and providing optimization suggestions.

Resource bottlenecks, such as excessive CPU utilization, growing use of memory, or high I/O activity, are reported
by the server operating system monitoring tools.

Proactive issue detection

A core DevOps goal is to improve system reliability and minimize downtime. Monitoring enables proactive
measures:

« Health checks: Tracking metrics including disk space, replication lag (for high availability), and the status of
background processes (such as the autovacuum daemon).

« Alerting: Setting up alerts for critical thresholds (e.g., disk usage above 80%, inactive replication slots,
growing replication lag, transaction ID wraparound risk) allows operations teams to address issues before
they impact users.

EDB

O POSTGRES /1 8

Faster feedback loop

Early feedback about database performance and reliability allows teams to shift-left the efforts required to ensure
optimal database operation. Monitoring helps integrate database performance into the entire software lifecycle.

- Development/staging insight: Performance issues identified in lower environments can be caught earlier in
the cycle, preventing costly fixes in production.

» Deployment validation: Monitoring metrics immediately after a new deployment helps validate that the
changes haven’t introduced any performance regressions or new errors.

Resource management and cost control
By understanding the database workload and resource usage, teams can make informed decisions:

» Accurate scaling: Ensuring that resources are provisioned appropriately—neither over-provisioning, thus
wasting money, nor under-provisioning, causing performance issues and availability problems.

» Workload analysis: Identifying peak usage times helps schedule maintenance, backups, or batch jobs for
periods of low impact.

EDB monitoring tools

Postgres Enterprise Manager

Postgres Enterprise Manager, or PEM, is a comprehensive database design and management tool, allowing its
users to monitor a wide range of predefined and custom metrics collected not only on the database servers but
also on other components of the database infrastructure, such as failover managers, connection poolers, backup
servers, and so on. Users can also define metric thresholds and configure PEM to alert them when these thresholds
are crossed.

PEM is deployed using client-server architecture, with agents collocated with database servers or monitoring
servers remotely, as shown in the following diagram:

[5o5]
f |
— @ @‘ pemAgent #2
CLIENT
BROWSER
HTTPS (TCF/IP) - 2
----- - B Qoeeeeeeeeees | G0 pemAgent #3
EDB POSTGRES ENTERPRISE
MANAGER SERVER
: PEM WEB APPLICATION
1> %@@ (WSGl application) REMOTE
MONITORING
pemAgent STORAGE
[PEM host] [Backend
database server]
UNMA NAG ED <
SERVERS
libpq (SSL) - Authentication: agent user, agent SSL certificate and key
----p libpq - Database server connection parameters [provided in the server properties dialog in Connection & Parameters tabs]
libpq - ASB (Agent - Server Binding) authentication [provided in the server properties dialog, pemAgent tab]
-
EDB

POSTGRES /I 9

PEM comes with a command-line interface, pemworker, which allows users to register agents and Postgres
servers with the PEM server programmatically, building PEM integration into the DevOps deployment pipelines.

Prometheus and Grafana integration

Prometheus is a popular solution for metrics collection, storage, and retrieval. In combination with Grafana, a
flexible metrics dashboard and alerting service, it is becoming a de facto standard for open source metrics
management, particularly in the context of microservices-based applications running on various Kubernetes
platforms. CloudNativePG offers built-in integration with both, supplying a Prometheus exporter endpoint, a set of
predefined metrics, and a collection of sample Grafana dashboards for Postgres, providing users with insights into
the operation of their Postgres clusters.

EDB developers do not only use Prometheus as the principal monitoring system in the EDB Postgres Al platform
and support its use by our customers; they also contribute to the continuing development of the software.

EDB Postgres Al Hybrid Manager

EDB Postgres Al Hybrid Manager is the next-generation observability platform for databases. It can collect metrics,
logs, and traces not only from Hybrid Manager-managed Postgres instances but also from customer-maintained
Postgres and Oracle databases, as well as database services deployed on popular cloud computing platforms such
as Amazon AWS, Google Cloud, and Microsoft Azure.

The Hybrid Manager platform comprises Prometheus for the storage and retrieval of metrics, with Thanos enabling
scalability and availability; Loki for log consolidation; and Grafana for customizable dashboards. It also incorporates
arich set of dashboards in its own user interface, giving users immediate access to performance and resource
utilization insights across their entire database estate, as a single-pane-of-glass view. The diagram below provides
a high-level overview of the Hybrid Manager deployment architecture:

SELF-MANAGED PG Al HYBRID MANAGER (HM)
CLUSTERS MONITORING
= — [>
MONITORING
— — SERVICES
= HYBRID MANAGER
— MANAGED
PrOTHANOS CLUSTERS
CSP-MANAGED LOKI L » DATAINGESTION
CLUSTERS
CLUSTERS MANAGED
s E BY HYBRID MANAGER
—— > STATS COLLECTOR g SELF-MANAGED CLUSTERS,

s REGISTERED WITHHMAGENT

—
—_— | CSP-MANAGED CLUSTERS,
5= CONNECTED TOHYBRID MANAGER

3 v
HYBRID MANAGER HYBRID MANAGER
CONSOLE GRAFANA

EDB

POSTGRES /I 10

OpenTelemetry

OpenTelemetry, or OTel, is an observability framework for generating, publishing, and collecting telemetry data,
such as metrics, logs, or application traces. The edb_otel extension allows users to instrument their database
procedural code, such as stored procedures and functions, to emit metrics and traces using the OTel protocol,
which can then be easily integrated into the existing monitoring infrastructure, providing valuable insights into
the database application performance and aid in troubleshooting of newly deployed code. This helps close the
deployment feedback loop, allowing teams to follow DevOps practices.

Appendix |. Example TPA configuration file

architecture: M1

cluster_name: my_first_cluster
cluster_tags:

Owner: nick.ivanov@enterprisedb.com

cluster_rules:

PEM

- cidr_ip: 0.0.0.0/0
from_port: 443

proto: tcp

to_port: 443

- cidr_ip: 172.31.860.0/20
from_port: ©

to_port: 65535

proto: tcp

- cidr_ip: 172.31.80.0/20
from_port: -1

to_port: -1

proto: icmp

ec2_ami:

Name: RHEL-9.4.0_HVM-20240423-x86_64-62-Hourly2-GP3
Owner: ‘309956199498’

ec2_instance_reachability: public
ec2_instance_key: key_name

cluster_bucket: auto

ec2_vpc:

us-east-1

Name: tpa

cidr: 172.31.80.0/20

cluster_vars:
default_barman_minimum_redundancy: 3
enable_pg_backup_api: true
edb_repositories:

- enterprise

epas_redwood_compat: false
failover_manager: efm

efm_version: ‘5.0’
postgres_coredump_filter: ‘Oxff’
postgres_version: ‘17’
postgresqgl_flavour: epas
pem_agent_package_version: ‘10.1.0’
pem_server_package_version: ‘10.1.0’
preferred_python_version: python3
packages:

EDB

POSTGRES /I

1

RedHat:

- kernel-modules-extra
- barman-cli-cloud
common:

- edb-lasso

yum_repository_list:
- EPEL

locations:

- Name: a

az: us-east-1b

region: us-east-1
subnet: 172.31.80.06/20

instance_defaults:
default_volumes:

- device_name: root
encrypted: false
volume_size: 50
volume_type: gp3
platform: aws

4/32 GB, Xeon 4th gen.
type: r7i.large

vars:

ansible_user: ec2-user
packages:

RedHat:

- barman-cli-cloud

- python3-boto3

instances:

- Name: pgl
location: a
node: 1

backup: barman
role:

- primary

- pem-agent
volumes:

- device_name: /dev/sdf
encrypted: false
vars:

volume_for: postgres_data

volume_size: 100
volume_type: gp3

- device_name: /dev/sdg
encrypted: false

vars:

volume_for: postgres_wal
volume_size: 50
volume_type: gp3

- Name: pg2
location: a
node: 2

role:

- replica

- pem-agent
upstream: pgl
volumes:

- device_name: /dev/sdf

EDB

POSTGRES

12

encrypted: false

vars:

volume_for: postgres_data
volume_size: 100
volume_type: gp3

- device_name: /dev/sdg
encrypted: false

vars:

volume_for: postgres_wal
volume_size: 50
volume_type: gp3

- Name: pg3
location: a
node: 3

role:

- replica

- pem-agent
upstream: pg1l
volumes:

- device_name: /dev/sdf
encrypted: false

vars:

volume_for: postgres_data
volume_size: 100
volume_type: gp3

- device_name: /dev/sdg
encrypted: false

vars:

volume_for: postgres_wal
volume_size: 50
volume_type: gp3

- Name: barman
location: a

node: 3

role:

- barman

- pem-agent

volumes:

- device_name: /dev/sdf
encrypted: false

vars:

volume_for: barman_data
volume_size: 200
volume_type: gp3

- Name: pemserver
location: a

node: 4

role:

- pem-server

EDB

POSTGRES /I

13

Appendix Il. Important monitoring metrics

This document discusses the various metrics available from the EDB PostgreSQL-based monitoring interface as
well as from the Postgres Enterprise Manager (PEM) database. The list of metrics included herein is not exhaustive;
it is a baseline recommendation. Customers should consider adapting these recommendations to their specific

needs and environments.

The Alert column in the tables below shows which metrics may warrant setting up alerts; specific alert threshold
values depend on the specific application workload pattern and service-level requirements.

Server events

Metric

PostgreSQL instance
start-up or shutdown

Backup success or
failure

WAL archiving failure

Database errors

Checkpoint
frequency

EDB

O POSTGRES /1

Sources

PostgreSQL log file

Backup job log

PostgreSQL log file
pg_stat_archiver

PostgreSQL log file

pg_stat_
checkpointer

Alert

Description

Scan log for lines including received SIGHUP,
reloading configuration files, or database
system was shut down.

Monitor the backup job log for error messages
to ensure backups complete successfully
on schedule.

While occasional WAL archiving failure is not
critical, consistent failures will lead to the WAL
files accumulating on disk, potentially leading to
disk space shortage, and affect the database
RPO compliance.

Scan log for lines including the error levels
ERROR, FATAL, PANIC.

Too-frequent checkpoints and a high number of
requested checkpoints can indicate suboptimal
WAL and checkpointer configuration.

14

Operating system
Metric

Disk utilization

CPU utilization

Memory utilization

Application behavior

Metric

Number of sessions

Number of idle
sessions

Number of idle-in-

transaction sessions

Deadlocks

Locks

EDB

O POSTGRES /1

Sources

Data directory
WAL directory
Backup directory

0s

(ON]

Sources

pg_stat_activity

pg_stat_activity

pg_stat_activity

pg_stat_database

pg_locks
pg_stat_activity

Alert

Alert

Description

Monitor for sudden growth of used disk space.
The alert threshold should depend on the
volume size rather than percentage of used
space and must allow sufficient time to react.

Consistent high CPU utilization can indicate
suboptimal tuning of the database (missing
indexes, wrong parallelization settings,
misbehaving applications, etc.) and requires
detailed analysis.

It is normal for a database server to acquire a
large amount of memory over time and never
release it to the operating system. However,
memory utilization should be monitored to
identify possible memory leaks and support
resource planning.

Description

The number of sessions should stay below the
server max_connections setting.

A large number of sessions in the idle state
might indicate an incorrect configuration of the
connection pool or poorly designed applications.
Although the overhead of one idle connection

is not significant, a large number of such
connections can impact the server performance.

The presence of sessions that remain in the
“idle in transaction” state for more than a few
seconds likely indicates poor application design
or application errors. Such sessions can block
concurrent transactions and prevent efficient
vacuuming of tables.

Deadlocks are often an indicator of logical
errors in the applications.

A constantly high number of locks and locks held
for a long time can severely affect application
performance. They can be an indicator of poor
application design and user errors.

15

Replication performance

Metric Sources Alert
Inactive replication pg_replication_ N
slots slots
Replication lag pg_stat_ N
replication
Vacuum performance
Metric Sources Alert
wraparound risk (age
of datfrozenxid)
Tables not vacuumed pg_stat_ N
or analyzed recently replication
(last_vacuum,
last_autovacuum,
last_analyze,
last_autoanalyze
columns)
About the author
Nick lvanov

Solutions Architect, EDB
m Connecton LinkedIn

Description

Inactive replication slots will cause WAL files to
accumulate, which can eventually cause WAL
disk space exhaustion.

Monitor for growing replication lag or constant
lag that exceeds the RPO requirements.

Description

See discussion in www.postgresgl.org/docs/
current/routine-vacuuming.html#VACUUM-FOR-
WRAPAROUND.

Tables that are constantly modified should be
regularly analyzed and vacuumed.

J Nick lvanov is a seasoned solutions architect at EDB. Since April 2022, he has brought

" extensive expertise in database architecture and analytics from a notable tenure at
IBM from May 2015 to March 2022. He holds a Dipl.-Ing. degree in computing systems
and networks from Bauman Moscow State Technical University.

About EDB Postgres Al

EDB Postgres Al is the first open, enterprise-grade sovereign data and Al platform, with a secure, compliant, and
fully scalable environment, on premises and across clouds. Supported by a global partner network, EDB Postgres Al
unifies transactional, analytical, and Al workloads, enabling organizations to operationalize their data and LLMs where, = EDB

when, and how they need them.

© EnterpriseDB Corporation 2025. All rights reserved

POSTGRES /I

http://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
http://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
http://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.linkedin.com/in/nick-ivanov-toronto/

	Postgres in a DevOps context
	Automated provisioning and configuration
	Trusted Postgres Architect
	Cloud-native Postgres

	Schema and code management
	Automated testing

	Continuous deployment for Postgres
	Blue/green deployment
	Canary deployment

	Monitoring and observability
	Performance optimization
	Proactive issue detection
	Faster feedback loop
	Resource management and cost control
	EDB monitoring tools
	Postgres Enterprise Manager
	Prometheus and Grafana integration
	EDB Postgres AI Hybrid Manager
	OpenTelemetry

	Appendix I. Example TPA configuration file
	Appendix II. Important monitoring metrics
	Server events
	Operating system
	Application behavior
	Replication performance
	Vacuum performance

