
enterprisedb.com

High Availability & Disaster Recovery
of PostgreSQL Databases with
EDB and Red Hat OpenShift
Reference architecture for a single Red Hat OpenShift cluster

https://www.enterprisedb.com

2

Running business-critical PostgreSQL databases on
Red Hat OpenShift

Although EDB Postgres Distributed for Kubernetes (PGD4K) supports architectures spanning multiple Red Hat

OpenShift clusters, this document focuses only on elevating the single point of failure of PostgreSQL databases

with EDB PG4K to a Red Hat OpenShift cluster, typically equivalent to an entire region in the cloud or a data center

in on-premises deployments. The recommendations included in this document serve as a building block for more

complex architectures across different Red Hat OpenShift clusters. A separate document covers addressing

multiple Red Hat OpenShift clusters.

EDB Postgres for Kubernetes, or EDB PG4K, is a certified Level 5 Operator for Red Hat OpenShift, designed to

streamline Day 2 operations of PostgreSQL databases. It enhances database management with features such

as high availability, disaster recovery, primary/standby cluster management, automated failover, self-healing, and

online continuous backups to object stores or volume snapshots. Additionally, it supports point-in-time recovery

(PITR), ensuring robust data protection and recovery options, seamlessly integrating with business continuity

solutions such as Red Hat OpenShift API for Data Protection (OADP) and Veeam Kasten, Trilio, Portworx Backup,

IBM Fusion, and others.

EnterpriseDB (EDB) has long been a leader in PostgreSQL development. Now, as founding sponsors and

maintainers of the open source CloudNativePG operator—which sits at the heart of PG4K—EDB is pushing the

boundaries of innovation in cloud-native database environments.

With the combined power of Red Hat OpenShift and EDB PG4K, you can run your PostgreSQL business-critical

databases with prime RPO and RTO goals in a cloud-native environment, either as microservice databases

next to their applications or as a database-as-a-service (DBaaS) solution serving internal organizational

needs or public customers. Red Hat OpenShift and EDB PG4K create unprecedented opportunities for cloud

deployments, whether private, public, hybrid, or multi-cloud. The stack offers minimal differences in configuration

and management across various environments, providing flexibility, enabling data portability, and eliminating

vendor lock-in at the cloud service provider level.

Understanding your current Red Hat OpenShift architecture

Ensuring business continuity requires a thorough understanding of your infrastructure’s single points of failure

(SPoFs), their locations, mitigation methods, and potential impacts on downtime, productivity, and reputation.

Red Hat OpenShift, and Kubernetes more broadly, is designed to provide high availability and self-healing

capabilities within a single cluster. It can operate, where available, across multiple data centers or availability zones

(AZs) and on various nodes (virtual or physical machines), offering resilience against component failures. Figures 1

and 2 illustrate typical Red Hat OpenShift deployments in cloud environments and on-premises

infrastructures, respectively.

Figure 1. A Red Hat OpenShift cluster deployed in a “stretched” configuration across three cloud availability zones

Data center 1 Data center 2 Data center 3

Red Hat OpenShift cluster

3

A standard Red Hat OpenShift deployment consists of three key types of nodes:

•	 Master nodes (control plane): Manage the cluster, handle scheduling, and run essential services such as

the API server, scheduler, and controller manager.

•	 Infrastructure nodes: Host critical infrastructure components such as the default router, integrated

container image registry, and cluster metrics and monitoring tools.

•	 Worker nodes: Run the application workloads, hosting the containers and executing application pods.

This architecture ensures efficient management and scalability for both cloud and on-premises deployments.

Figure 2. A standard Red Hat OpenShift on-premises deployment with distinct clusters for each data center

Figure 3. The three main kinds of nodes in a standard Red Hat OpenShift deployment

Master node

Infra node

Worker
nodes

Subnet 1 (on-premises)
or AZ 1 (cloud)

Subnet 2 (on-premises)
or AZ 2 (cloud)

Subnet 3 (on-premises)
or AZ 3 (cloud)

Master node

Infra node

Worker
nodes

Master node

Infra node

Worker
nodes

Architectural considerations for PostgreSQL deployment
on Red Hat OpenShift

EDB PG4K extends the Red Hat OpenShift API to seamlessly manage a PostgreSQL cluster within the same

Red Hat OpenShift cluster. It also provides ways to mitigate the business continuity risks across different Red Hat

OpenShift clusters through native physical replication.

Key recommendations for managing PostgreSQL databases on Red Hat OpenShift

1.	 Rely on multiple availability zones (cloud) or subnets (on-premises): Leverage three availability zones/

subnets within a Red Hat OpenShift cluster. This configuration ensures zero data loss for high availability and

achieves a very low recovery time objective (RTO) within a single Red Hat OpenShift cluster.

Data center 1 Data center 2

Red Hat OpenShift cluster 1 Red Hat OpenShift cluster 2

Red Hat OpenShift cluster

4

The result is a complete and transparent physical separation of PostgreSQL workloads from other applications,

with dedicated nodes for PostgreSQL, termed “Postgres nodes.” These nodes can be easily added to existing

Red Hat OpenShift clusters and scaled up as needed. This setup is illustrated in the following figure:

2.	 Isolate PostgreSQL workloads: Dedicate nodes specifically for PostgreSQL workloads, separating

them from other applications. Use Red Hat OpenShift features such as node labels, selectors, taints, and

tolerations to enforce this separation through declarative configuration. Reserve at least three nodes for

PostgreSQL in each Red Hat OpenShift cluster, distributed evenly across the availability zones/subnets.

Scale in multiples of three to maintain balance and resilience. In some cases, you might dedicate three Red

Hat OpenShift worker nodes to a single PostgreSQL cluster, each hosting a PostgreSQL instance (primary

or replica).

3.	 Trust PostgreSQL replication over storage replication: Unlike many cloud-native applications that

synchronize state at the storage level, PostgreSQL handles state synchronization independently through its

built-in physical replication capabilities, based on write-ahead log (WAL) shipping. These capabilities, used

successfully in production by millions of users worldwide for more than a decade, include asynchronous

and synchronous streaming replication over the network, as well as asynchronous file-based log shipping,

typically used as a fallback option (e.g., storing WAL files in an object store). Standby servers, or replicas, can

also handle read-only workloads thanks to the hot standby feature.

Figure 4. The four primary types of nodes in a typical EDB PG4K deployment on Red Hat OpenShift

Master node Master node Master node

Infra node Infra node Infra node

Worker
nodes

Worker
nodes

Worker
nodes

Postgres
nodes

Postgres
nodes

Postgres
nodes

To designate specific worker nodes as PostgreSQL nodes within your OpenShift cluster, we recommend

using the node-role.kubernetes.io/postgres label. This label helps identify the nodes that should handle

PostgreSQL workloads. You can apply the label to your chosen nodes using the following command:

$ oc label node <node-name> node-role.kubernetes.io/postgres=””

You can set appropriate taints on these nodes to ensure that only PostgreSQL workloads are scheduled on your

designated Postgres nodes. This will prevent other types of workloads from being scheduled on them unless they

have the matching tolerations. For example, you can add the following taint to a PostgreSQL node:

$ oc adm taint nodes <node-name> node-role.kubernetes.io/postgres=:NoSchedule

By applying this taint, the node will only accept pods with a corresponding toleration, limiting it to PostgreSQL

workloads. When creating them, remember to set the proper tolerations on your PostgreSQL clusters so they

can be scheduled on the tainted nodes. This approach enhances resource isolation and ensures that your

PostgreSQL workloads run in the most suitable environment.

Red Hat OpenShift cluster

Subnet 1 (on-premises)
or AZ 1 (cloud)

Subnet 2 (on-premises)
or AZ 2 (cloud)

Subnet 3 (on-premises)
or AZ 3 (cloud)

5

EDB PG4K relies on storage classes and directly manages file system PersistentVolumeClaim (PVC) resources

instead of StatefulSets for finer control over database files.

Moreover, EDB PG4K enables distributed active/passive topologies across multiple Red Hat OpenShift clusters

and regions via object stores (RPO ≤ 5 minutes) and/or streaming replication (near-zero RPO, depending on

latency) through the replica cluster feature.

Within a Red Hat OpenShift cluster, EDB PG4K provides a custom resource definition (CRD) called Cluster to

manage a highly available PostgreSQL cluster. This cluster features a single primary and multiple replicas that

are ready to become primary in the event of an unexpected incident (e.g., automated failover) or during planned

operations (e.g., switchover following a Red Hat OpenShift node update).

For application routing, EDB PG4K automatically maintains a set of Red Hat OpenShift service objects, typically

of ClusterIP type, that direct traffic to the primary or read-only replicas. These services can be easily configured

through service templates, including load balancers to provide external access to the database from outside Red

Hat OpenShift if needed.

EDB PG4K supports advanced scheduling capabilities, such as pod affinity and anti-affinity, node selectors, and

tolerations. These features help manage single points of failure by ensuring that each PostgreSQL instance runs

on different nodes and, where possible, in different availability zones/subnets.

A typical architecture of a single PostgreSQL cluster in high availability via quorum-based synchronous replication

is depicted in the following diagram (availability zones/subnets are marked with dotted lines, as they might

not exist):

Despite being storage agnostic, database workloads demand performance and data durability, which can only be

ensured through proper benchmarking before production. In most cases, local storage attached to a worker node is

preferable. Detailed storage recommendations are covered in a separate document.

Storage considerations

Recommended PostgreSQL architecture

EDB PG4K leverages PostgreSQL native physical replication to:

•	 Manage the single primary/multiple standby PostgreSQL cluster within a single Red Hat OpenShift

cluster for HA purposes using streaming replication, including synchronous replication; this setup provides

automated failover, self-healing, and rolling upgrade capabilities.

•	 Implement continuous backup to an immutable object store, essential for full recovery and PITR with a

maximum RPO of five minutes.

Figure 5. Typical architecture of a high-availability PostgreSQL cluster

Worker node Worker node

Primary
Potentially

sync standby

Local storage

Worker node

Sync standby

Local storage Local storage

Postgres Postgres Postgres

Red Hat OpenShift cluster

Legend PostgreSQL physical
streaming replication

Subnet 1 (on-premises)
or AZ 1 (cloud)

Subnet 2 (on-premises)
or AZ 2 (cloud)

Subnet 3 (on-premises)
or AZ 3 (cloud)

Continuous
backup

Legend

WAL archive Backup catalog

6

By design, in the above case, every committed transaction in the database is guaranteed to be written to a replica

using PostgreSQL’s native quorum-based synchronous replication, ensuring an RPO of zero for high availability.

Given that Red Hat OpenShift can immediately detect a failure on a primary, the failover time is typically just the

time it takes for the most advanced replica to be promoted to primary status, usually within a minute in total. This

makes achieving 99.99% uptime a realistic goal, given a solid underlying infrastructure.

Regarding disaster recovery, EDB PG4K allows you to set up continuous backups of a PostgreSQL cluster

through base backups and the WAL archive, ensuring, by default, a maximum RPO of five minutes.

In the simplest scenario, both components can reside in a local object store, either using the native provider

solution if you are in the cloud (e.g., AWS S3, Azure Blob Storage, Google Cloud Storage) or a specialized product

such as Red Hat OpenShift Data Foundation (ODF) object storage. If your storage class supports them, EDB

PG4K also allows you to perform backup and recovery using volume snapshots. Hybrid strategies with both

object stores and volume snapshots having different retention policies are also possible.

Read-write service Read-only service

Figure 6. Typical architecture of a high-availability PostgreSQL cluster, highlighting services and continuous backup

WAL restore
fallback process

Physical backup
from a standby

Read-only client
connections

WAL archiving
process

PostgreSQL physical
streaming replication

Read-write client
connections

Red Hat OpenShift cluster

Worker node Worker node

Primary
Potentially

sync standby

Local storage

Worker node

Sync standby

Local storage Local storage

Postgres Postgres Postgres

Subnet 1 (on-premises)
or AZ 1 (cloud)

Subnet 2 (on-premises)
or AZ 2 (cloud)

Subnet 3 (on-premises)
or AZ 3 (cloud)

The goal of this document is to depict a single Red Hat OpenShift cluster as the SPoF for every PostgreSQL

cluster managed by EDB PG4K running within it. In cloud environments, the SPoF is typically the region, thanks to

availability zones. In most on-premises scenarios, the SPoF will be equivalent to a data center. In both cases, EDB

PG4K can transparently and seamlessly handle both high availability (HA) and disaster recovery (DR) for every

PostgreSQL cluster within the Red Hat OpenShift cluster. EDB PG4K can be configured with a backup strategy to

deliver very low RTOs and guaranteed RPOs.

The most important recommendation is to dedicate worker nodes specifically for PostgreSQL workloads to

ensure better performance predictability. Start with three worker nodes for PostgreSQL per Red Hat OpenShift

cluster, and place taints on them to ensure that only PostgreSQL workloads managed by EDB PG4K can run.

When the Red Hat OpenShift cluster cannot accommodate additional PostgreSQL clusters, you can add more

worker nodes in multiples of three, using the same methodology based on taints.

Carefully evaluate the storage component, and consider using local storage directly mounted on each worker

node, especially if you plan to use bare metal servers for PostgreSQL. In any case, benchmark both the storage

and the database, following the documentation of EDB PGD4K.

For PostgreSQL, we recommend a three-instance cluster with a primary and two replicas configured with

quorum-based synchronous replication of one replica. This setup ensures zero data loss for high availability. At

a minimum, make sure that each instance is located on separate worker nodes via pod anti-affinity settings. This

configuration also guarantees that node maintenance at the Red Hat OpenShift layer triggers rolling updates for

each PostgreSQL cluster, minimizing downtime. This is called a shared-nothing architecture.

By using EDB PG4K, you achieve a highly integrated set of Postgres clusters within your Red Hat OpenShift

infrastructure, including security, observability, logging, and more.

Once the Red Hat OpenShift cluster becomes the SPoF for each PostgreSQL cluster, you can extend HA and DR

to cover additional Red Hat OpenShift clusters using EDB PG4K capabilities such as symmetric architectures,

cascading replication, and most importantly, replica clusters for distributed topologies.

These capabilities are entirely declarative, making them suitable for infrastructure as code (IaC) across a fleet of

Red Hat OpenShift clusters. This is critical for on-premises deployments of Red Hat OpenShift within a single data

center—although in this case, EDB PG4K cannot autonomously control automated failover beyond the Red Hat

OpenShift cluster, requiring external intervention.

Figure 7. Example architecture of a Postgres cluster with cascading replication across two Red Hat OpenShift clusters

Summary

Legend WAL restore
fallback process

Physical backup
from a standby

Read-write service
from a standby

WAL archiving
process

Read-write client
connections

PostgreSQL physical
streaming replication

Continuous
backup

Continuous
backupWAL archive WAL archiveBackup catalog Backup catalog

Read-write service Read-only service Read service

Red Hat OpenShift cluster #1 Red Hat OpenShift cluster #2

Worker node Worker nodeWorker node Worker node

Primary
Designated

primary
Potentially

sync standby
Cascading

standby

Local storage Local storage

Worker node Worker node

Sync standby
Cascading

standby

Local storage Local storageLocal storage Local storage

Postgres PostgresPostgres PostgresPostgres Postgres

© EnterpriseDB Corporation 2024. All rights reserved.

For further discussion or questions, please contact the Sales team at
enterprisedb.com/contact.

https://www.enterprisedb.com/contact

